幂函数的教案精选6篇

时间:
Indulgence
分享
下载本文

富有创意的教案可以让学生在学习中更加享受,详细的教案内容能够让我们更好地准备教学材料和资源,确保教学过程顺利进行,以下是多客范文网小编精心为您推荐的幂函数的教案精选6篇,供大家参考。

幂函数的教案精选6篇

幂函数的教案篇1

一、基础知识回顾:

1、仰角、俯角 2、坡度、坡角

二、基础知识回顾:

1、在倾斜角为300的山坡上种树,要求相邻两棵数间的水平距离为3米,那么相邻两棵树间的斜坡距离为 米

2、升国旗时,某同学站在离旗杆底部20米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角为300,若双眼离地面1.5米,则旗杆高度为 米(保留根号)

3、如图:b、c是河对岸的两点,a是对岸岸边一点,测得∠acb=450,bc=60米,则点a到bc的距离是 米。

3、如图所示:某地下车库的入口处有斜坡ab,其坡度i=1:1.5,

则ab= 。

三、典型例题:

例2、右图为住宅区内的两幢楼,它们的高ab=cd=30米,两楼间的距离ac=24米,现需了解甲楼对乙楼采光的影响,当太阳光与水平线的夹角为300时,求甲楼的影子在乙楼上有多高?

例2、如图所示:在湖边高出水面50米的山顶a处望见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志p处的仰角为450,又观其在湖中之像的俯角为600,试求飞艇离湖面的高度h米(观察时湖面处于平静状态)

例3、如图所示:某货船以20海里/时的速度将一批重要货物由a处运往正西方的b处,经过16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台风中心正以40海里/时的速度由a向北偏西600方向移动,距离台风中心200海里的圆形区域(包括边界)均会受到影响。

(1)问b处是否会受到台风的影响?请说明理由。

(2)为避免受到台风的影响,该船应该在多少小时内卸完货物?

(供选数据:=1.4 =1.7)

四、巩固提高:

1、 若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高 米。

2、如图:a市东偏北600方向一旅游景点m,在a市东偏北300的公路上向前行800米到达c处,测得m位于c的北偏西150,则景点m到公路ac的距离为 。(结果保留根号)

3、同一个圆的内接正方形和它的外切正方形的边长之比为( )

a、sin450 b、sin600 c、cos300 d、cos600

3、如图所示,梯子ab靠在墙上,梯子的底端a到墙根o的距离为2米,梯子的顶端b到地面的距离为7米,现将梯子的'底端a向外移动到a,使梯子的底端a到墙根o的距离等于3米,同时梯子的顶端b下降至b,那么bb( )(填序号)

a、等于1米b、大于1米c、小于1米

5、如图所示:某学校的教室a处东240米的o点处有一货物,经过o点沿北偏西600方向有一条公路,假定运货车辆形成的噪音影响范围在130米以内。

(1)通过计算说明,公路上车辆的噪音是否对学校造成影响?

(2)为了消除噪音对学校的影响,计划在公路边修一段隔音墙,请你计算隔音墙的长度(只考虑声音的直线传播)

幂函数的教案篇2

我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

一、教材分析

1、教材的地位和作用:函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

二、教学目标分析

基于对教材的理解和分析,我制定了以下的教学目标:

1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的'能力。

3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

三、教法学法分析

1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。

2、教学:贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

幂函数的教案篇3

【教学目的】

1、知识目标:经历观察、归纳、交流的过程,探索反比例函数的主要性质及其图像形状。

2、能力目标:提高学生的观察、分析能力和对图形的感知水平。

3、情感目标:让学生进一步体会反比例函数刻画现实生活问题的作用。

【教学重点】

探索反比例函数图象的主要性质及其图像形状。

【教学难点】

1、准确画出反比例函数的图象。

2、准确掌握并能运用反比例函数图象的性质。

【教学过程】

活动1、汇海拾贝

让学生回忆我们所学过得一次函数y=kx+b(k≠0),说出画函数图像的一般步骤。(列表、描点、连线),对照图象回忆一次函数的性质。

活动2、学海历练

让学生仿照画一次函数的方法画反比例函数y=2/x和y=—2/x的图像并观察图像的特点

活动3、成果展示

将各组的成果展示在大家的面前,并纠正可能出现的问题。

活动4、行家看台

1.反比例函数的图象是双曲线

2.当k>0时,两支双曲线分别位于第一,三象限内当kt;0时,两支双曲线分别位于第二,四象限内

3.双曲线会越来越靠近坐标轴,但不会与坐标轴相交

活动5、星级挑战

活动6、终极挑战

如图,矩形abcd的对角线bd经过坐标原点,矩形的边分别平行于坐标轴,点c在反比例函数y=(k2—5k—10)/x的图像上,若点a的坐标是(—2,—2)则k的值为?

幂函数的教案篇4

教学目标:

(一)教学知识点:

1、对数函数的概念;

2.对数函数的图象和性质.

(二)能力训练要求:

1.理解对数函数的概念;

2.掌握对数函数的图象和性质

(三)德育渗透目标:

1.用联系的观点分析问题;

2.认识事物之间的互相转化

教学重点:

对数函数的图象和性质

教学难点:

对数函数与指数函数的关系

教学方法:

联想、类比、发现、探索

教学辅助:

多媒体

教学过程:

一、引入对数函数的概念

由学生的预习,可以直接回答“对数函数的概念”

由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:

问题:

1.指数函数是否存在反函数?

2.求指数函数的反函数

①;指出反函数的定义域。

3.结论

所以函数与指数函数互为反函数。

这节课我们所要研究的便是指数函数的反函数——对数函数.

二、讲授新课

1.对数函数的定义:

定义域:(0,+∞);值域:(-∞,+∞)

2.对数函数的图象和性质:

因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

研究指数函数时,我们分别研究了底数和两种情形.

那么我们可以画出与图象关于直线对称的曲线得到的图象.

还可以画出与图象关于直线对称的曲线得到的图象.

请同学们作出与的草图,并观察它们具有一些什么特征?

对数函数的图象与性质:

图象

性质(1)定义域:

(2)值域:

(3)过定点,即当时,

(4)上的增函数

(4)上的减函数

3.图象的加深理解:

下面我们来研究这样几个函数:

我们发现:

与图象关于x轴对称;与图象关于x轴对称.

一般地,与图象关于x轴对称.

再通过图象的变化(变化的值),我们发现:

(1)时,函数为增函数,

(2)时,函数为减函数,

4.练习:

(1)如图:曲线分别为函数的图像,试问的大小关系如何?

(2)比较下列各组数中两个值的大小:

(3)解关于x的不等式:

思考:(1)比较大小:

(2)解关于x的不等式:

三、小结

这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

四、课后作业

课本p85,习题2.8,1、3

幂函数的教案篇5

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标

(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

五、教学重点和难点

1、教学重点

理解并掌握诱导公式。

2、教学难点

正确运用诱导公式,求三角函数值,化简三角函数式。

六、教法学法以及预期效果分析

“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

1、教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

在本节课的教学过程中,本人以学生为,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

2、学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。

在本节课的教学过程中,本人引导学生的学法为思考问题 共同探讨 解决问题 简单应用 重现探索过程 练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

3、预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

七、教学流程设计

(一)创设情景

1、复习锐角300,450,600的三角函数值;

2、复习任意角的三角函数定义;

3、问题:由 ,你能否知道sin2100的值吗?引如新课。

设计意图

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。

(二)新知探究

1、 让学生发现300角的终边与2100角的终边之间有什么关系;

2、让学生发现300角的终边和2100角的终边与单位圆的交点为 、 的坐标有什么关系;

3、sin2100与sin300之间有什么关系。

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫。

(三)问题一般化

幂函数的教案篇6

教学目标

掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:

二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:

一、情境创设

一次函数y=x+2的图象与x轴的交点坐标

问题1.任意一次函数的图象与x轴有几个交点?

问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?

二、探索活动

活动一观察

在直角坐标系中任意取三点a、b、c,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索

如图1,观察二次函数y=x2-x-6的图象,回答问题:

(1)图象与x轴的交点的坐标为a(,),b(,)

(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?

活动三猜想和归纳

(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的'其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?

这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析

例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25

(2)y=3x2-4x+2

(3)y=-2x2+3x-1

例2.已知二次函数y=mx2+x-1

(1)当m为何值时,图象与x轴有两个交点

(2)当m为何值时,图象与x轴有一个交点?

(3)当m为何值时,图象与x轴无交点?

四、拓展练习

1.如图2,二次函数y=ax2+bx+c的图象与x轴交于a、b。

(1)请写出方程ax2+bx+c=0的根

(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。

2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)

五、小结

这节课我们有哪些收获?

六、作业

求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。

幂函数的教案精选6篇相关文章:

幸福的猫教案精选6篇

关于火的科学教案精选6篇

数字3和4的教案精选6篇

认识6—10的教案精选7篇

小学数学倍的认识教案精选6篇

小班有关纸的教案精选6篇

六到十的认识教案精选6篇

大班蒜的教案精选6篇

幼儿园体育活动的教案精选6篇

幼儿社会教案的教案6篇

幂函数的教案精选6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
151212