教案的准备可以帮助我们更好地掌握教学内容,教案是教师备课的必备工具,能够帮助教师系统地组织教学内容,下面是多客范文网小编为您分享的对数函数的教案8篇,感谢您的参阅。
对数函数的教案篇1
一、课前准备:
?自主梳理】
1.对数:
(1) 一般地,如果 ,那么实数 叫做________________,记为________,其中 叫做对数的_______, 叫做________.
(2)以10为底的对数记为________,以 为底的对数记为_______.
(3) , .
2.对数的运算性质:
(1)如果 ,那么 ,
.
(2)对数的换底公式: .
3.对数函数:
一般地,我们把函数____________叫做对数函数,其中 是自变量,函数的定义域是______.
4.对数函数的图像与性质:
a1 0
图象性
质 定义域:___________
值域:_____________
过点(1,0),即当x=1时,y=0
x(0,1)时_________
x(1,+)时________ x(0,1)时_________
x(1,+)时________
在___________上是增函数 在__________上是减函数
?自我检测】
1. 的定义域为_________.
2.化简: .
3.不等式 的解集为________________.
4.利用对数的换底公式计算: .
5.函数 的奇偶性是____________.
6.对于任意的 ,若函数 ,则 与 的大小关系是___________________________.
二、课堂活动:
?例1】填空题:
(1) .
(2)比较 与 的大小为___________.
(3)如果函数 ,那么 的最大值是_____________.
(4)函数 的奇偶性是___________.
?例2】求函数 的定义域和值域.
?例3】已知函数 满足 .
(1)求 的解析式;
(2)判断 的奇偶性;
(3)解不等式 .
课堂小结
三、课后作业
1. .略
2.函数 的'定义域为_______________.
3.函数 的值域是_____________.
4.若 ,则 的取值范围是_____________.
5.设 则 的大小关系是_____________.
6.设函数 ,若 ,则 的取值范围为_________________.
7.当 时,不等式 恒成立,则 的取值范围为______________.
8.函数 在区间 上的值域为 ,则 的最小值为____________.
9.已知 .
(1)求 的定义域;
(2)判断 的奇偶性并予以证明;
(3)求使 的 的取值范围.
10.对于函数 ,回答下列问题:
(1)若 的定义域为 ,求实数 的取值范围;
(2)若 的值域为 ,求实数 的取值范围;
(3)若函数 在 内有意义,求实数 的取值范围.
四、纠错分析
错题卡 题 号 错 题 原 因 分 析
高二数学教案:对数与对数函数
一、课前准备:
?自主梳理】
1.对数
(1)以 为底的 的对数, ,底数,真数.
(2) , .
(3)0,1.
2.对数的运算性质
(1) , , .
(2) .
3.对数函数
, .
4.对数函数的图像与性质
a1 0
图象性质 定义域:(0,+)
值域:r
过点(1,0),即当x=1时,y=0
x(0,1)时y0
x(1,+)时y0 x(0,1)时y0
x(1,+)时y0
在(0,+)上是增函数 在(0,+)上是减函数
【自我检测】
1. 2. 3.
4. 5.奇函数 6. .
二、课堂活动:
?例1】填空题:
(1)3.
(2) .
(3)0.
(4)奇函数.
?例2】解:由 得 .所以函数 的定义域是(0,1).
因为 ,所以,当 时, ,函数 的值域为 ;当 时, ,函数 的值域为 .
?例3】解:(1) ,所以 .
(2)定义域(-3,3)关于原点对称,所以
,所以 为奇函数.
(3) ,所以当 时, 解得
当 时, 解得 .
对数函数的教案篇2
案例背景:
对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
案例叙述:
(一).创设情境
(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
(提问):什么是指数函数?指数函数存在反函数吗?
(学生): 是指数函数,它是存在反函数的.
(师):求反函数的步骤
(由一个学生口答求反函数的过程):
由 得 .又 的值域为 ,
所求反函数为 .
(师):那么我们今天就是研究指数函数的反函数-----对数函数.
(二)新课
1.(板书) 定义:函数 的反函数 叫做对数函数.
(师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)
(学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .
(在此基础上,我们将一起来研究对数函数的图像与性质.)
2.研究对数函数的图像与性质
(提问)用什么方法来画函数图像?
(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.
(学生2)用列表描点法也是可以的。
请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.
(师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.
具体操作时,要求学生做到:
(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2) 画出直线 .
(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3. 性质
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于 轴的右侧.
(3)图像恒过(1,0)
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.
(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的
当 时,在 上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 时,有 ;当 时,有 .
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
(三).简单应用
1. 研究相关函数的`性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
2. 利用单调性比较大小
例2. 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 ; (4) 与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.拓展练习
练习:若 ,求 的取值范围.
四.小结及作业
案例反思:
本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.
对数函数的教案篇3
学习目标
1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;
3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.
旧知提示
复习:若 ,则 ,其中 称为 ,其范围为 , 称为 .
合作探究(预习教材p70- p72,找出疑惑之处)
探究1:元旦晚会前,同学们剪彩带备用。现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。设所得的彩带的根数为 ,剪的次数为 ,试用 表示 .
新知:对数函数的概念
试一试:以下函数是对数函数的是( )
a. b. c. d. e.
反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如: , 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 ,且 .
探究2:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?
研究方法:画出函数图象,结合图象研究函数性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
作图:在同一坐标系中画出下列对数函数的图象.
新知:对数函数的图象和性质:
象
定义域
值域
过定点
单调性
思考:当 时, 时, ; 时, ;
当 时, 时, ; 时, .
典型例题
例1求下列函数的定义域:(1) ; (2) .
例2比较大小:
(1) ; (2) ; (3) ;(4) 与 .
课堂小结
1. 对数函数的概念、图象和性质;
2. 求定义域;
3. 利用单调性比大小.
知识拓展
对数函数凹凸性:函数 , 是任意两个正实数.
当 时, ;当 时, .
学习评价
1. 函数 的定义域为( )
a. b. c. d.
2. 函数 的定义域为( )
a. b. c. d.
3. 函数 的定义域是 .
4. 比较大小:
(1)log 67 log 7 6 ; (2) ; (3) .
课后作业
1. 不等式的 解集是( ).
a. b. c. d.
2. 若 ,则( )
a. b. c. d.
3. 当a1时,在同一坐标系中,函数 与 的图象是( ).
4. 已知函数 的定义域为 ,函数 的定义域为 ,则有( )
a. b. c. d.
5. 函数 的定义域为 .
6. 若 且 ,函数 的图象恒过定点 ,则 的坐标是 .
7.已知 ,则 = .
8. 求下列函数的定义域:
2.2.2 对数函数及其性质(2)
学习目标
1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质;
3. 学习反函数的.概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.
旧知提示
复习1:对数函数 图象和性质.
a1 0
图性质
(1)定义域:
(2)值域:
(3)过定点:
(4)单调性:
复习2:比较两个对数的大小:(1) ; (2) .
复习3:(1) 的定义域为 ;
(2) 的定义域为 .
复习4:右图是函数 , , , 的图象,则底数之间的关系为 .
合作探究 (预习教材p72- p73,找出疑惑之处)
探究:如何由 求出x?
新知:反函数
试一试:在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质?
反思:
(1)如果 在函数 的图象上,那么p0关于直线 的对称点在函数 的图象上吗?为什么?
(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称.
典型例题
例1求下列函数的反函数:
(1) ; (2) .
提高:①设函数 过定点 ,则 过定点 .
②函数 的反函数过定点 .
③己知函数 的图象过点(1,3)其反函数的图象过点(2,0),则 的表达式为 .
小结:求反函数的步骤(解x 习惯表示定义域)
例2溶液酸碱度的测量问题:溶液酸碱度ph的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升.
(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?
(2)纯净水 摩尔/升,计算其酸碱度.
例3 求下列函数的值域:(1) ;(2) .
课堂小结
① 函数模型应用思想;② 反函数概念.
知识拓展
函数的概念重在对于某个范围(定义域)内的任意一个自变量x的值,y都有唯一的值和它对应. 对于一个单调函数,反之对应任意y值,x也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是交叉相等.
学习评价
1. 函数 的反函数是( ).
a. b. c. d.
2. 函数 的反函数的单调性是( ).
a. 在r上单调递增 b. 在r上单调递减
c. 在 上单调递增 d. 在 上单调递减
3. 函数 的反函数是( ).
a. b. c. d.
4. 函数 的值域为( ).
a. b. c. d.
5. 指数函数 的反函数的图象过点 ,则a的值为 .
6. 点 在函数 的反函数图象上,则实数a的值为 .
课后作业
1. 函数 的反函数为( )
a. b. c. d.
2. 设 , , , ,则 的大小关系是( )
a. b. c. d.
3. 的反函数为 .
4. 函数 的值域为 .
5. 已知函数 的反函数图象经过点 ,则 .
6. 设 ,则满足 的 值为 .
7. 求下列函数的反函数.
(1) y= ; (2)y= (a1,x (3) .
对数函数的教案篇4
一、内容与解析
(一)内容:对数函数的性质
(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。
二、目标及解析
(一)教学目标:
1.掌握对数函数的性质并能简单应用
(二)解析:
(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。
三、问题诊断分析
在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.
四、教学支持条件分析
在本节课()的教学中,准备使用(),因为使用(),有利于().
五、教学过程
问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。
设计意图:
师生活动(小问题):
1.这些对数函数的解析式有什么共同特征?
2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。
3.通过这些函数图象请从函数值的分布角度总结相关性质
4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?
问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。
问题3.根据问题1、2填写下表
图象特征函数性质
a>10<a<1a>10<a<1
向y轴正负方向无限延伸函数的值域为r+
图象关于原点和y轴不对称非奇非偶函数
函数图象都在y轴右侧函数的定义域为r
函数图象都过定点(1,0)
自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数
在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1
在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1
[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成
例1.比较下列各组数中两个值的大小:
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
变式训练:1. 比较下列各题中两个值的大小:
⑴ log106 log108 ⑵ log0.56 log0.54
⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比较正数m,n 的大小:
(1) log 3 m log 0.3 n
(3) log a m 1)
例2.(1)若 且 ,求 的取值范围
(2)已知 ,求 的取值范围;
六、目标检测
1.比较 , , 的大小:
2.求下列各式中的x的值
(1)
演绎推理导学案
2.1.2 演绎推理
学习目标
1.结合已学过的.数学实例和生活中的实例,体会演绎推理的重要性;
2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.
学习过程
一、前准备
复习1:归纳推理是由 到 的推理.
类比推理是由 到 的推理.
复习2:合情推理的结论 .
二、新导学
※ 学习探究
探究任务一:演绎推理的概念
问题:观察下列例子有什么特点?
(1)所有的金属都能够导电,铜是金属,所以 ;
(2)一切奇数都不能被2整除,20xx是奇数,所以 ;
(3)三角函数都是周期函数, 是三角函数,所以 ;
(4)两条直线平行,同旁内角互补.如果a与b是两条平行直线的同旁内角,那么 .
新知:演绎推理是
的推理.简言之,演绎推理是由 到 的推理.
探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?
所有的金属都导电 铜是金属 铜能导电
已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断
大前提 小前提 结论
新知:“三段论”是演绎推理的一般模式:
大前提—— ;
小前提—— ;
结论—— .
新知:用集合知识说明“三段论”:
大前提:
小前提:
结 论:
试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式.
※ 典型例题
例1 命题:等腰三角形的两底角相等
已知:
求证:
证明:
把上面推理写成三段论形式:
变式:已知空间四边形abcd中,点e,f分别是ab,ad的中点, 求证:ef 平面bcd
例2求证:当a>1时,有
动手试试:1证明函数 的值恒为正数。
2 下面的推理形式正确吗?推理的结论正确吗?为什么?
所有边长相等的凸多边形是正多边形,(大前提)
菱形是所有边长都相等的凸多边形, (小前提)
菱形是正多边形. (结 论)
小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.
三、总结提升
※ 学习小结
1. 合情推理 ;结论不一定正确.
2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.
3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的,这是因为
a.大前提错误 b.小前提错误 c.推理形式错误 d.非以上错误
2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”
结论显然是错误的,是因为
a.大前提错误 b.小前提错误 c.推理形式错误 d.非以上错误
3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为
a.大前提错误 b.小前提错误 c.推理形式错误 d.非以上错误
4.归纳推理是由 到 的推理;
类比推理是由 到 的推理;
演绎推理是由 到 的推理.
后作业
1. 运用完全归纳推理证明:函数 的值恒为正数。
直观图
总 课 题空间几何体总课时第4课时
分 课 题直观图画法分课时第4课时
目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.
重点难点用斜二侧画法画图.
引入新课
1.平行投影、中心投影、斜投影、正投影的有关概念.
2.空间图形的直观图的画法——斜二侧画法:
规则:(1)____________________________________________________________.
(2)____________________________________________________________.
(3)____________________________________________________________.
(4)____________________________________________________________.
例题剖析
例1 画水平放置的正三角形的直观图.
例2 画棱长为 的正方体的直观图.
巩固练习
1.在下列图形中,采用中心投影(透视)画法的是__________.
2.用斜二测画法画出下列水平放置的图形的直观图.
3.根据下面的三视图,画出相应的空间图形的直观图.
课堂小结
通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.
对数函数的教案篇5
教学目标:
1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.
2.培养学生数形结合的思想,以及分析推理的能力.
教学重点:
对数函数性质的应用.
教学难点:
对数函数的`性质向对数型函数的演变延伸.
教学过程:
一、问题情境
1.复习对数函数的性质.
2.回答下列问题.
(1)函数y=log2x的值域是 ;
(2)函数y=log2x(x1)的值域是 ;
(3)函数y=log2x(0
3.情境问题.
函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?
二、学生活动
探究完成情境问题.
三、数学运用
例1 求函数y=log2(x2+2x+2)的定义域和值域.
四、练习:
(1)已知函数y=log2x的值域是[-2,3],则x的范围是__.
(2)函数 ,x(0,8]的值域是 .
(3)函数y=log (x2-6x+17)的值域 .
(4)函数 的值域是__.
例2 判断下列函数的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.751,试求实数a 取值范围.
例4 已知函数y=loga(1-ax)(a0,a1).
(1)求函数的定义域与值域;
(2)求函数的单调区间.
练习:
1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为r的有 (请写出所有正确结论的序号).
2.函数y=lg( -1)的图象关于 对称.
3.已知函数 (a0,a1)的图象关于原点对称,那么实数m= .
4.求函数 ,其中x [ ,9]的值域.
五、要点归纳与方法小结
(1)借助于对数函数的性质研究对数型函数的定义域与值域;
(2)换元法;
(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).
六、作业
课本p70~71-4,5,10,11.
对数函数的教案篇6
教学目标:
使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.
教学重点:
复合函数单调性、奇偶性的讨论方法.
教学难点:
复合函数单调性、奇偶性的讨论方法.
教学过程:
[例1]设loga23 <1,则实数a的取值范围是
a.0<a<23 b. 23 <a<1
c.0<a<23 或a>1d.a>23
解:由loga23 <1=logaa得
(1)当0<a<1时,由y=logax是减函数,得:0<a<23
(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1
综合(1)(2)得:0<a<23 或a>1 答案:c
[例2]三个数60.7,0.76,log0.76的大小顺序是
a.0.76<log0.76<60.7 b.0.76<60.7<log0.76
c.log0.76<60.7<0.76 d.log0.76<0.76<60.7
解:由于60.7>1,0<0.76<1,log0.76<0 答案:d
[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小
解法一:作差法
|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga |
=1|lga| (|lg(1-x)|-|lg(1+x)|)
∵0<x<1,∴0<1-x<1<1+x
∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)
由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,
∴|loga(1-x)|>|loga(1+x)|
解法二:作商法
lg(1+x)lg(1-x) =|log(1-x)(1+x)|
∵0<x<1 ∴0<1-x<1+x
∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x
由0<x<1 ∴1+x>1,0<1-x2<1
∴0<(1-x)(1+x)<1 ∴11+x >1-x>0
∴0<log(1-x) 11+x <log(1-x)(1-x)=1
∴|loga(1-x)|>|loga(1+x)|
解法三:平方后比较大小
∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]
=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x
∵0<x<1,∴0<1-x2<1,0<1-x1+x <1
∴lg(1-x2)<0,lg1-x1+x <0
∴loga2(1-x)>loga2(1+x)
即|loga(1-x)|>|loga(1+x)|
解法四:分类讨论去掉绝对值
当a>1时,|loga(1-x)|-|loga(1+x)|
=-loga(1-x)-loga(1+x)=-loga(1-x2)
∵0<1-x<1<1+x,∴0<1-x2<1
∴loga(1-x2)<0, ∴-loga(1-x2)>0
当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0
∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0
∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|
[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为r,求实数a的取值范围
解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈r恒成立.
当a2-1≠0时,其充要条件是:
a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53
又a=-1,f(x)=0满足题意,a=1不合题意.
所以a的取值范围是:(-∞,-1]∪(53 ,+∞)
[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小
解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)
f(x)-g(x)=1+logx3-2logx2=logx(34 x).
①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).
若34 x<1,则1<x<43 ,这时f(x)<g(x)
②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)
故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)
当x∈(1,43 )时,f(x)<g(x)
[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]
解:原方程可化为
(9x-1-5)= [4(3x-1-2)]
∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0
∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3
∴x=1或x=2 经检验x=1是增根
∴x=2是原方程的根.
[例7]解方程log2(2-x-1) (2-x+1-2)=-2
解:原方程可化为:
log2(2-x-1)(-1)log2[2(2-x-1)]=-2
即:log2(2-x-1)[log2(2-x-1)+1]=2
令t=log2(2-x-1),则t2+t-2=0
解之得t=-2或t=1
∴log2(2-x-1)=-2或log2(2-x-1)=1
解之得:x=-log254 或x=-log23
对数函数的教案篇7
一、说教材
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.
2、教学目标的确定及依据
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1) 知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用
对数函数的性质解决简单的问题.
(2) 能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、
分析、归纳等逻辑思维能力.
(3) 情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数
学的精确和美妙之处,调动学生学习数学的积极性.
3、教学重点与难点
重点:对数函数的意义、图像与性质.
难点:对数函数性质中对于在a1与01两种情况函数值的不同变化.
二、说教法
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生实验、观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透类比、数形结合、分类讨论等数学思想方法.
2、教学手段:
计算机多媒体辅助教学.
三、说学法
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)类比学习:与指数函数类比学习对数函数的图像与性质.
(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,
归纳得出对数函数的图像与性质.
(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,
使问题得以圆满解决.
四、说教程
1、温故知新
我通过复习细胞分裂问题,由指数函数 引导学生逐步得到对数函数的意义及对数函数与指数函数的关系:互为反函数.
设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,
有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生
分析问题的能力.
2、探求新知
对数函数的教案篇8
教学目标:
(一)教学知识点:
1、对数函数的概念;
2.对数函数的图象和性质.
(二)能力训练要求:
1.理解对数函数的概念;
2.掌握对数函数的图象和性质
(三)德育渗透目标:
1.用联系的观点分析问题;
2.认识事物之间的互相转化
教学重点:
对数函数的图象和性质
教学难点:
对数函数与指数函数的关系
教学方法:
联想、类比、发现、探索
教学辅助:
多媒体
教学过程:
一、引入对数函数的概念
由学生的预习,可以直接回答“对数函数的概念”
由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:
问题:
1.指数函数是否存在反函数?
2.求指数函数的反函数
①;指出反函数的定义域。
3.结论
所以函数与指数函数互为反函数。
这节课我们所要研究的便是指数函数的反函数——对数函数.
二、讲授新课
1.对数函数的定义:
定义域:(0,+∞);值域:(-∞,+∞)
2.对数函数的图象和性质:
因为对数函数与指数函数互为反函数.所以与图象关于直线对称.
因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.
研究指数函数时,我们分别研究了底数和两种情形.
那么我们可以画出与图象关于直线对称的曲线得到的图象.
还可以画出与图象关于直线对称的曲线得到的图象.
请同学们作出与的草图,并观察它们具有一些什么特征?
对数函数的图象与性质:
图象
性质(1)定义域:
(2)值域:
(3)过定点,即当时,
(4)上的增函数
(4)上的减函数
3.图象的加深理解:
下面我们来研究这样几个函数:
我们发现:
与图象关于x轴对称;与图象关于x轴对称.
一般地,与图象关于x轴对称.
再通过图象的变化(变化的值),我们发现:
(1)时,函数为增函数,
(2)时,函数为减函数,
4.练习:
(1)如图:曲线分别为函数的图像,试问的大小关系如何?
(2)比较下列各组数中两个值的大小:
(3)解关于x的不等式:
思考:(1)比较大小:
(2)解关于x的不等式:
三、小结
这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.
四、课后作业
课本p85,习题2.8,1、3
对数函数的教案8篇相关文章:
★ 水的教案8篇
★ 摘番茄的教案8篇
★ 多样的窗教案8篇
★ 拍手歌的教案8篇