教案是教师备课的必备工具,能够帮助教师系统地组织教学内容,教案是反映教师教学水平的重要依据,能够展现教师的教学策略和方法,下面是多客范文网小编为您分享的二次函数的教案8篇,感谢您的参阅。
二次函数的教案篇1
一、教材分析
本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a
二、学情分析
本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标
(一)知识与能力目标
1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;
2. 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标
通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标
1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;
2. 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点
1.重点
通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2.难点
二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与 设计说明
本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程
教学环节(注明每个环节预设的时间)
(一)提出问题(约1分钟)
教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?
学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。
(二)探究新知
1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)
教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。
学生活动:讨论解决
目的:激发兴趣
2.配方求解顶点坐标和对称轴(约5分钟)
教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)
=0.5(x2-12x+36-36+42)
=0.5(x-6)2+3
教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。
学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。
目的:即加深对本课知识的认知有增强了配方法的应用意识。
3.画出该二次函数图像(约5分钟)
教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。
学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。
目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。
4.探究y=-2x2-4x+1的函数图像特点(约3分钟)
教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。
学生活动:学生独立完成。
目的:研究a
5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)
教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a
学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的'变化情况。
目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。
6.简单应用(约11分钟)
教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。
教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。
学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。
目的:巩固新知
课堂小结(2分钟)
1. 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?
2. 你对本节课有什么感想或疑惑?
布置作业(1分钟)
1. 教科书习题22.1第6,7两题;
2. 《课时练》本节内容。
板书设计
提出问题 画函数图像 学生板演练习
例题配方过程
到顶点式的配方过程 一般式相关知识点
教学反思
在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。
我认为优点主要包括:
1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。
2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
3.板书字体端正,格式清晰明了,突出重点、难点。
4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。
所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:
1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;
2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;
3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。
4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。
重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。
二次函数的教案篇2
二次函数的性质与图像
【学习目标】
1、使学生掌握研究二次函数的一般方法——配方法;
2、应“描点法”画出二次函数 ( 的图像,通过图像总结二次函数的性质;
3、通过研究二次函数和图像的性质,能进一步体会研究一般函数的方法,能由特殊到一般地研究问题。
【自主学习】
二次函数的性质与图像
1)定义:函数 叫二次函数,它的定义域是 。特别地,当 时,二次函数变为 ( 。
2)函数 的图像和性质:
(1)函数 的图像是一条顶点为原点的抛物线,当 时,抛物线开口 ,当 时,抛物线开口 。
(2)函数 为 (填“奇函数”或“偶函数”)。
(3)函数 的图像的对称轴为 。
3)二次函数 的性质
(1)函数的图像是 ,抛物线的顶点坐标是 ,抛物线的对称轴是直线 。
(2)当 时,抛物线开口向上,函数在 处取得最小值 ;在区间 上是减函数,在 上是增函数。
(3)当 时,抛物线开口向下,函数在 处取得最大值 ;在区间 上是增函数,在 上是减函数。
跟踪1、试述二次函数 的.性质,并作出它的图像。
跟踪2、研讨二次函数 的性质和图像。
跟踪3、求函数 的值域和它的图像的对称轴,并说出它在那个区间上是增函数?在那个区间上是减函数?
跟踪4、课本p60练习b
1、
【归纳总结】
研究二次函数的图像与性质的思路是什么?
函数二次函数 (a、b、c是常数,a≠0)
图像a>0 a
性质
?典例示范】
例1:将函数 配方,确定其对称轴和顶点坐标,求出 它的单调区间及最大值或最小值,并画出它的图像。
例2:二次函数 与 的图像开口大小相同,开口方向也相同。已知函数 的解析式和 的顶点,写出符合下列条件的函数 的解析式。
(1)函数 , 的图像的顶点是(4, );
(2)函数 , 图像的顶点是 。
二次函数的教案篇3
?基础过关】
1、用一根长10 的铁丝围成一个矩形,设其中的一边长为 ,矩形的面积为 ,则 与 的函数关系式为 .
2、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形abcd.设ab边的长为x米.矩形abcd的面积为s平方米.求s与x之间的`函数关系
3、小敏在某次投篮中,球的运动路线是抛物线 的
一部分(如图),若命中篮圈中心,则他与篮底的距离 是( )
4、小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.
5、某商场以每台2500元进口一批彩电,如果每台售价定为2700元,可卖出400台,以100元为一个价格单位,若每台提高一个单位价格,则会少卖出50台。
⑴若设每台的定价为 (元)卖出这批彩电获得的利润为 (元),试写出 与 的函数关系式;
⑵当定价为多少元时可获得最大利润?最大利润是多少?
6、王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线 ,
其中 (m)是球的飞行高度, (m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请写出抛物线的开口方向、顶点坐标、对称轴.(2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
比例线段
1.相似形:在数学上,具有相同形状的图形称为相似形
2.比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段
3. 比例的性质
(1)基本性质: , a∶b=b∶c b2=ac
(2)比例中项:若 的比例中项.
比例尺 = (做题之前注意先统一单位)
以上就是初三数学寒假作业之求二次函数的应用的全部内容,希望你做完作业后可以对书本知识有新的体会,愿您学习愉快。
二次函数的教案篇4
二次函数的教学设计
教学内容:人教版九年义务教育初中第三册第108页
教学目标:
1。 1。 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2。 2。 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3。 3。 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程设计:
一 创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1。写出圆的半径是r(cm),它的面积s(cm2)与r的关系式
答:s=πr2。 ①
2。写出用总长为60m的篱笆围成矩形场地,矩形面积s(m2)与矩形一边长l(m)之间的关系
答:s=l(30-l)=30l-l2 ②
分析:①②两个关系式中s与r、l之间是否存在函数关系?
s是否是r、l的一次函数?
由于①②两个关系式中s不是r、l的一次函数,那么s是r、l的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二 归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,
那么,y叫做x的二次函数。
注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。
练习:1。举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2。出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如:;;; 的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
三 尝试模仿、巩固提高
让我们先从最简单的二次函数y=ax2入手展开研究
1。 1。 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?
请同学们画出函数y=x2的图象。
(学生分别画图,教师巡视了解情况。)
2。 2。 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。
解:一、列表:
x
-3
-2
-1
0
1
2
3
y=x2
9
4
1
0
1
4
9
二、描点、连线: 按照表格,描出各点。然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来。
对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。
练习:画出函数;的图象(请两个同学板演)
x
-3
-2
-1
0
1
2
3
y=0。5x2
4。5
2
0。5
0
0。5
02
4。5
y=-x2
-9
-4
-1
0
-1
-4
-9
画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。
(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的'方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)
三 运用新知、变式探究
画出函数 y=5x2图象
学生在画图象的过程当中遇到函数值较大的困难,不知如何是好。
x
-0。5
-0。4
-0。3
-0。2
-0。1
0
0。1
0。2
0。3
0。4
0。5
y=5x2
1。25
0。8
0。45
0。2
0。05
0
0。05
0。2
0。45
0。8
1。25
教师出示已画好的图象让学生观察
注意:1。 画图象应描7个左右的点,描的点越多图象越准确。
2。 自变量x的取值应注意关于y轴对称。
3。 对于不同的二次函数自变量x的取值应更加灵活,例如可以取分数。
四。 四。 归纳小结、延续探究
教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:
一般的,二次函数y=ax2的图象是一条抛物线,对称轴是y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。
五 回顾反思、总结收获
在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。
(在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)
二次函数的教案篇5
教学目标
掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:
二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:
一、情境创设
一次函数y=x+2的图象与x轴的交点坐标
问题1.任意一次函数的图象与x轴有几个交点?
问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?
二、探索活动
活动一观察
在直角坐标系中任意取三点a、b、c,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索
如图1,观察二次函数y=x2-x-6的图象,回答问题:
(1)图象与x轴的交点的坐标为a(,),b(,)
(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?
活动三猜想和归纳
(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的'其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?
这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析
例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25
(2)y=3x2-4x+2
(3)y=-2x2+3x-1
例2.已知二次函数y=mx2+x-1
(1)当m为何值时,图象与x轴有两个交点
(2)当m为何值时,图象与x轴有一个交点?
(3)当m为何值时,图象与x轴无交点?
四、拓展练习
1.如图2,二次函数y=ax2+bx+c的图象与x轴交于a、b。
(1)请写出方程ax2+bx+c=0的根
(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。
2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)
五、小结
这节课我们有哪些收获?
六、作业
求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。
二次函数的教案篇6
本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.
在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思[
等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.
2.4二次函数y=ax2+bx+c的图象(一)
教学目标
(一)教学知识点[
1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系.理解a,h,k对二次函数图象的影响.
2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.
(二)能力训练要求
1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.
2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.
(三)情感与价值观要求
1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.
2.让学生学会与人合作,并能与他人交流思维的过程和结果.
教学重点
1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程.
2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.
3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.
教学难点
能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.
教学方法
探索比较总结法.
教具准备
投影片四张
第一张:(记作2.4.1 a)
第二张:(记作2.4.1 b)
第三张:(记作2.4.1 c)
第四张:(记作2.4.1 d)
教学过程
Ⅰ.创设问题情境、引入新课
[师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.
Ⅱ.新课讲解
一、比较函数y=3x2与y=3(x-1)2的图象的性质.
投影片:(2.4 a)
(1)完成下表,并比较3x2和3(x-1)2的值,
它们之间有什么关系?
x -3 -2 -1 0 1 2 3 4
3x2
3(x-1)2
(2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的'?
(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?
[师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.
[生](1)第二行从左到右依次填:27.12,3,0,3, 12,27,48;第三行从左到右依次填48,27,12,3,0,3, 12,27.
(2)用描点法作出y=3(x-1)2的图象,如上图.
(3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).
(4)当x1时,函数y=3(x-1)2的值随x值的增大而增大,x1时,y=3(x-1)2的值随x值的增大而减小.
[师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?
[生]y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的.
[师]能像上节课那样比较它们图象的性质吗?
[生]相同点:
a.图象都中抛物线,且形状相同,开口方向相同.
b. 都是轴对称图形.
c.都有最小值,最小值都为0.
d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大.
不同点:
a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1.
b. 它们的位置不问.[来源:]
c. 它们的顶点坐标不同. y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0),
联系:
把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像.
二、做一做
投影片:(2.4.1 b)
在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.
[生]图象如下
它们的图象的性质比较如下:
相同点:
a.图象都是抛物线,且形状相同,开口方向相同.
b. 都足轴对称图形,对称轴都为x=1.
c. 在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.
不同点:
a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.
b. 它们的位置不同.
联系:
把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.
三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.
[师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?
[生]可以.
二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.
[师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗?
[生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.
[师]你能系统总结一下吗?
[生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.
[师]下面我们就一般形式来进行总结.
投影片:(2.4.1 c)
一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.
(1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c0时,向上移动,当c0时,向下移动.
(2)将函数y=ax2的图象左右移动便可得到函数y=a(x-h)2的图象,当h0时,向右移动,当h0时,向左移动.
(3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)+k的图象.
因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.
下面大家经过讨论之后,填写下表:
y=a(x-h)2+k 开口方向 对称轴 顶点坐标
a0
a0
四、议一议
投影片:(2,4.1 d)
(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?
[师]在不画图象的情况下,你能回答上面的问题吗?
[生](1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象.
(2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).
(3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x-1时,y的值随x值的增大而减小;当x-1时,y的值随x值的增大而增大.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.
Ⅴ.课后作业
习题2.4
Ⅵ.活动与探究
二次函数y= (x+2)2-1与y= (x-1)2+2的图象是由函数y= x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?
解:y= (x+2)2-1的图象是由y= x2的图象向左平移2个单位,再向下平移1个单位得到的,y= (x-1)2+2的图象是由y= x2的图象向右平移1个单位,再向上平移2个单位得到的.
y= (x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y= (x-1)2+2的图象.
y= (x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y= (x+2)2-1的图象.
板书设计
4.2.1 二次函数y=ax2+bx+c的图象(一) 一、1. 比较函数y=3x2与y=3(x-1)2的
图象和性质(投影片2.4.1 a)
2.做一做(投影片2.4.1 b)
3.总结函数y=3x2,y=3(x-1)2y= 3(x-1)2+2的图象之间的关系(投影片2.4.1 c)
4.议一议(投影片2.4.1 d)
二、课堂练习
1.随堂练习
2.补充练习
三、课时小结
四、课后作业
备课资料
参考练习
在同一直角坐标系内作出函数y=- x2,y=- x2-1,y=- (x+1)2-1的图象,并讨论它们的性质与位置关系.
解:图象略
它们都是抛物线,且开口方向都向下;对称轴分别为y轴y轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).
y=- x2的图象向下移动1个单位得到y=- x2-1 的图象;y=- x2的图象向左移动1个单位,向下移动1个单位,得到y=- (x+1)2-1的图象.
二次函数的教案篇7
〖大纲要求〗
1. 理解二次函数的概念;
2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;
3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;
4. 会用待定系数法求二次函数的解析式;
5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,数学教案-二次函数。
内容
(1)二次函数及其图象
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向
抛物线y=ax2+bx+c(a≠0)的顶点是 (a)第一象限 (b)第二象限 (c)第三象限 (d)第四象限
20.某幢建筑物,从10米高的窗口a用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点m离墙1米,离地面米,则水流下落点b离墙距离ob是( )
(a)2米 (b)3米 (c)4米 (d)5米
三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分)
21.已知:直线y=x+k过点a(4,-3)。(1)求k的值;(2)判断点b(-2,-6)是否在这条直线上;(3)指出这条直线不过哪个象限。
22.已知抛物线经过a(0,3),b(4,6)两点,对称轴为x=,
(1) 求这条抛物线的解析式;
(2) 试证明这条抛物线与x轴的两个交点中,必有一点c,使得对于x轴上任意一点d都有ac+bc≤ad+bd。
23.已知:金属棒的长1是温度t的一次函数,现有一根金属棒,在o℃时长度为200cm,温度提高1℃,它就伸长0.002cm。
(1) 求这根金属棒长度l与温度t的函数关系式;
(2) 当温度为100℃时,求这根金属棒的长度;
(3) 当这根金属棒加热后长度伸长到201.6cm时,求这时金属棒的温度。
24.已知x1,x2,是关于x的方程x2-3x+m=0的两个不同的实数根,设s=x12+x22
(1) 求s关于m的解析式;并求m的取值范围;
(2) 当函数值s=7时,求x13+8x2的值;
25.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,求a的值。
26、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:
(1) 四边形CGEF的面积S关于x的函数表达式和X的取值范围;
(2) 当x为何值时,S的数值是x的4倍。
27、国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8%),台洲经济开发区某工厂计划销售这种产品m吨,每吨2000元。国家为了减轻工人负担,将税收调整为每100元缴税(8-x)元(即税率为(8-x)%),这样工厂扩大了生产,实际销售比原计划增加2x%。
(1) 写出调整后税款y(元)与x的函数关系式,指出x的取值范围;
(2) 要使调整后税款等于原计划税款(销售m吨,税率为8%)的78%,求x的值.
28、已知抛物线y=x2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)
(1) 写出A,B,C三点的坐标;
(2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;
(3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值。
习题2:
一.填空(20分)
1.二次函数=2(x - )2 +1图象的对称轴是 。
2.函数y= 的自变量的取值范围是 。
3.若一次函数y=(m-3)x+m+1的图象过一、二、四象限,则的取值范围是 。
4.已知关于的二次函数图象顶点(1,-1),且图象过点(0,-3),则这个二次函数解析式为 。
5.若y与x2成反比例,位于第四象限的一点p(a,b)在这个函数图象上,且a,b是方程x2-x -12=0的两根,则这个函数的关系式 。
6.已知点p(1,a)在反比例函数y= (k≠0)的图象上,其中a=m2+2m+3(m为实数),则这个函数图象在第 象限。
7. x,y满足等式x= ,把y写成x的函数 ,其中自变量x的取值范围是 。
8.二次函数y=ax2+bx+c+(a 0)的图象如图,则点p(2a-3,b+2)
在坐标系中位于第 象限
9.二次函数y=(x-1)2+(x-3)2,当x= 时,达到最小值 。
10.抛物线y=x2-(2m-1)x- 6m与x轴交于(x1,0)和(x2,0)两点,已知x1x2=x1+x2+49,要使抛物线经过原点,应将它向右平移 个单位。
二.选择题(30分)
11.抛物线y=x2+6x+8与y轴交点坐标( )
(a)(0,8) (b)(0,-8) (c)(0,6) (d)(-2,0)(-4,0)
12.抛物线y=- (x+1)2+3的顶点坐标( )
(a)(1,3) (b)(1,-3) (c)(-1,-3) (d)(-1,3)
13.如图,如果函数y=kx+b的图象在第一、二、三象限,那么函数y=kx2+bx-1的图象大致是( )
14.函数y= 的自变量x的取值范围是( )
(a)x 2 (b)x- 2且x 1 (d)x 2且x –1
15.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( )
(a)=3(x+3)2 -2 (b)=3(x+2)2+2 (c)=3(x-3)2 -2 (d)=3(x-3)2+2
16.已知抛物线=x2+2mx+m -7与x轴的两个交点在点(1,0)两旁,则关于x的方程 x2+(m+1)x+m2+5=0的根的情况是( )
(a)有两个正根 (b)有两个负数根 (c)有一正根和一个负根 (d)无实根
17.函数y=- x的图象与图象y=x+1的交点在( )
(a) 第一象限 (b)第二象限 (c)第三象限 (d)第四象限
18.如果以y轴为对称轴的抛物线y=ax2+bx+c的图象,如图,
则代数式b+c-a与0的关系( )
(a)b+c-a=0 (b)b+c-a>0 (c)b+c-a
19.已知:二直线y=- x +6和y=x - 2,它们与y轴所围成的三角形的面积为( )
(a)6 (b)10 (c)20 (d)12
20.某学生从家里去学校,开始时匀速跑步前进,跑累了后,再匀速步行余下的路程,初中数学教案《数学教案-二次函数》。下图所示图中,横轴表示该生从家里出发的时间t,纵轴表示离学校的路程s,则路程s与时间t之间的函数关系的`图象大致是( )
三.解答题(21~23每题5分,24~28每题7分,共50分)
21.已知抛物线y=ax2+bx+c(a 0)与x轴的两交点的横坐标分别是-1和3,与y轴交点的纵坐标是- ;
(1)确定抛物线的解析式;
(2)用配方法确定抛物线的开口方向,对称轴和顶点坐标。
22、如图抛物线与直线 都经过坐标轴的正半轴上a,b两点,该抛物线的对称轴x=—1,与x轴交于点c,且∠abc=90°求:
(1)直线ab的解析式;
(2)抛物线的解析式。
23、某商场销售一批名脾衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现每件衬衫降价1元, 商场平均每天可多售出2件:
(1)若商场平均每天要盈利1200元,每件衬衫要降价多少元,
(2)每件衬衫降价多少元时,商场平均每天盈利最多?
24、已知:二次函数 和 的图象都经过x轴上两个不同的点m、n,求a、b的值。
25、如图,已知⊿abc是边长为4的正三角形,ab在x轴上,点c在第一象限,ac与y轴交于点d,点a的坐标为{—1,0),求
(1)b,c,d三点的坐标;
(2)抛物线 经过b,c,d三点,求它的解析式;
(3)过点d作de∥ab交过b,c,d三点的抛物线于e,求de的长。
26 某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月用电不超100度
时,按每度0.57元计费:每月用电超过100度时.其中的100度仍按原标准收费,超过部分按每度0.50元计费。
(1)设月用电x度时,应交电费y元,当x≤100和x>100时,分别写出y关于x的函数
关系式;
(1)求证;不论m取何值,抛物线与x轴必有两个交点,并且有一个交点是a(2,0);
(2)设抛物线与x轴的另一个交点为b,ab的长为d,求d与m之间的函数关系式;
(3)设d=10,p(a,b)为抛物线上一点:
①当⊿aBP是直角三角形时,求b的值;
②当⊿abP是锐角三角形,钝角三角形时,分别写出b的取值范围(第2题不要求写出过程)
28、已知二次函数的图象 与x轴的交点为a,b(点B在点a的右边),与y轴的交点为c;
(1)若⊿abc为rt⊿,求m的值;
(1)在⊿abc中,若ac=BC,求sin∠acb的值;
(3)设⊿abc的面积为s,求当m为何值时,s有最小值.并求这个最小值。
二次函数的教案篇8
教学目标:
(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;
(2)培养学生的归纳、总结能力;
(3)通过两圆外公切线长的求法向学生渗透“转化”思想。
教学重点:
理解两圆相切长等有关概念,两圆外公切线的求法。
教学难点:
两圆外公切线和两圆外公切线长学生理解的不透,容易混淆。
教学活动设计
(一)实际问题(引入)
很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象。(这里是一种简单的数学建模,了解数学产生与实践)
两圆的公切线概念
1、概念:
教师引导学生自学。给出两圆的外公切线、内公切线以及公切线长的定义:
和两圆都相切的直线,叫做两圆的公切线。
(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线。
(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线。
(3)公切线的长:公切线上两个切点的距离叫做公切线的长。
2、理解概念:
(1)公切线的长与切线的长有何区别与联系?
(2)公切线的长与公切线又有何区别与联系?
(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长。但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点。
(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量。
(三)两圆的位置与公切线条数的关系
组织学生观察、概念、概括,培养学生的学习能力。添写教材p143练习第2题表。
(四)应用、反思、总结
例1 、已知:⊙o 1 、⊙o 2的半径分别为2cm和7cm,圆心距o 1 o 2 =13cm,ab是⊙o 1 、⊙o 2的外公切线,切点分别是a、b。求:公切线的长ab。
分析:首先想到切线性质,故连结o 1 a、o 2 b,得直角梯形ao 1 o 2 b。一般要把它分解成一个直角三角形和一个矩形,再用其性质。(组织学生分析,教师点拨,规范步骤)
解:连结o 1 a、o 2 b,作o 1 a⊥ab,o 2 b⊥ab。
过o 1作o 1 c⊥o 2 b,垂足为c,则四边形o 1 abc为矩形,
于是有
o 1 c⊥c o 2,o 1 c= ab,o 1 a=cb。
在rt△o 2 co 1和。
o 1 o 2 =13,o 2 c= o 2 b- o 1 a=5
ab= o 1 c= (cm)。
反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法。
例2* 、如图,已知⊙o 1 、⊙o 2外切于p,直线ab为两圆的公切线,a、b为切点,若pa=8cm,pb=6cm,求切线ab的长。
分析:因为线段ab是△apb的一条边,在△apb中,已知pa和pb的长,只需先证明△pab是直角三角形,然后再根据勾股定理,使问题得解。证△pab是直角三角形,只需证△apb中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过p作两圆的公切线cd如图,因为ab是两圆的公切线,所以∠cpb=∠abp,∠cpa=∠bap。因为∠bap+∠cpa+∠cpb+∠abp=180°,所以2∠cpa+2∠cpb=180°,所以∠cpa+∠cpb=90°,即∠apb=90°,故△apb是直角三角形,此题得解。
解:过点p作两圆的公切线cd
∵ ab是⊙o 1和⊙o 2的切线,a、b为切点
∴∠cpa=∠bap∠cpb=∠abp
又∵∠bap+∠cpa+∠cpb+∠abp=180°
∴ 2∠cpa+2∠cpb=180°
∴∠cpa+∠cpb=90°即∠apb=90°
在rt△apb中,ab 2 =ap 2 +bp 2
说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系。
(五)巩固练习
1、当两圆外离时,外公切线、圆心距、两半径之差一定组成()
(a)直角三角形(b)等腰三角形(c)等边三角形(d)以上答案都不对。
此题考察外公切线与外公切线长之间的差别,答案(d)
2、外公切线是指
(a)和两圆都祖切的直线(b)两切点间的距离
(c)两圆在公切线两旁时的公切线(d)两圆在公切线同旁时的公切线
直接运用外公切线的定义判断。答案:(d)
3、教材p141练习(略)
(六)小结(组织学生进行)
知识:两圆的公切线、外公切线、内公切线及公切线的长概念;
能力:归纳、概括能力和求外公切线长的能力;
思想:“转化”思想。
(七)作业:p151习题10,11。
二次函数的教案8篇相关文章:
★ 水的教案8篇
★ 摘番茄的教案8篇
★ 多样的窗教案8篇