一元二次方程的教案6篇

时间:
Fallinlove
分享
下载本文

结合实际应用的教案可以增强学生的学习动力,编写完善的教案能够提高教师的教学效率,多客范文网小编今天就为您带来了一元二次方程的教案6篇,相信一定会对你有所帮助。

一元二次方程的教案6篇

一元二次方程的教案篇1

一、教学内容分析

“一元二次方程的根的判别式”一节,在整个中学数学中占有重要的地位,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。通过这一节的学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,渗透数学的简洁美。

教学重点:根的判别式定理及逆定理的正确理解和运用

教学难点:根的判别式定理及逆定理的运用。

教学关键:对根的'判别式定理及其逆定理使用条件的透彻理解。

二、学情分析

学生已经学过一元二次方程的四种解法,并对 的作用已经有所了解,在此基础上来进一步研究 作用,它是前面知识的深化与总结。从思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。

三、教学目标

依据教学大纲和对教材的分析,以及结合学生已有的知识基础,本节课的教学目标是:

知识和技能:

1、感悟一元二次方程的根的判别式的产生的过程;

2、能运用根的判别式,判别方程根的情况和进行有关的推理论证;

3、会运用根的判别式求一元二次方程中字母系数的取值范围;

过程和方法:

1、培养学生的探索、创新精神;

2、培养学生的逻辑思维能力以及推理论证能力。

情感态度价值观:

1、向学生渗透分类的数学思想和数学的简洁美;

2、加深师生间的交流,增进师生的情感;

3、培养学生的协作精神。

一元二次方程的教案篇2

教材分析

1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

学情分析

1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。

3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。

教学目标

1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

教学重点和难点

1、重点:概念的形成及一般形式。

2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

一元二次方程的教案篇3

教材分析

一元二次方程是一种数学建模的方法,它有着广泛的实际背景,可以作为许多实际问题的数学模型。它体现了数学的转化思想,学好一元二次方程是学好二次函数不可或缺的,一元二次方程是高中数学的奠基工程。是本书的重点内容,为后续学习打下良好的基础。

学情分析

1、 经过两年的合作,我们班的学生已比较配合我上课,同时初三学生观察、类比、概括、归纳能力也都比较强,不过对应用题的分析他们还是觉得很头疼,在今后应用题的教学中需进一步加强。

2、 一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,一元二次方程是一次方程向二次方程的转化,是低次方程转向高次方程求解方法的阶梯。一元二次方程又是二次函数的特例。

教学目标

一、知识目标

1、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,,增加对一元二次方程的感性认识.

2、理解一元二次方程的概念.

3、掌握一元二次方程的'一般形式,正确认识二次项系数、一次项系数及常数项.

二、能力目标

1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.

2、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,进一步提高学生分析问题、解决问题的能力.

四、情感目标

1、培养学生主动探究知识、自主学习和合作交流的意识.

2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识

教学重点和难点

教学重点: 一元二次方程的概念和它的一般形式

难点:1、从实际问题中抽象出一元二次方程。2、正确识别一般式中的“项”及“系数”

一元二次方程的教案篇4

一、素质教育目标

(一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.

(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.

二、教学重点、难点

1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.

2.教学难点:根据数与数字关系找等量关系.

三、教学步骤

(一)明确目标

(二)整体感知:

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)列方程解应用问题的步骤?

①审题,②设未知数,③列方程,④解方程,⑤答.

(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).

2.例1 两个连续奇数的积是323,求这两个数.

分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.

以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.

解法(一)

设较小奇数为x,另一个为x+2,

据题意,得x(x+2)=323.

整理后,得x2+2x-323=0.

解这个方程,得x1=17,x2=-19.

由x=17得x+2=19,由x=-19得x+2=-17,

答:这两个奇数是17,19或者-19,-17.

解法(二)

设较小的奇数为x-1,则较大的奇数为x+1.

据题意,得(x-1)(x+1)=323.

整理后,得x2=324.

解这个方程,得x1=18,x2=-18.

当x=18时,18-1=17,18+1=19.

当x=-18时,-18-1=-19,-18+1=-17.

答:两个奇数分别为17,19;或者-19,-17.

解法(三)

设较小的奇数为2x-1,则另一个奇数为2x+1.

据题意,得(2x-1)(2x+1)=323.

整理后,得4x2= 324.

解得,2x=18,或2x=-18.

当2x=18时,2x-1=18-1=17;2x+1=18+1=19.

当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17

答:两个奇数分别为17,19;-19,-17.

引导学生观察、比较、分析解决下面三个问题:

1.三种不同的设元,列出三种不同的`方程,得出不同的x值,影响最后的结果吗?

2.解题中的x出现了负值,为什么不舍去?

答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.

练习

1.两个连续整数的积是210,求这两个数.

2.三个连续奇数的和是321,求这三个数.

3.已知两个数的和是12,积为23,求这两个数.

学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.

分析:数与数字的关系是:

两位数=十位数字×10+个位数字.

三位数=百位数字×100+十位数字×10+个位数字.

解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.

据题意,得10(x-2)+x=3x(x-2),

整理,得3x2-17x+20=0,

当x=4时,x-2=2,10(x-2)+x=24.

答:这个两位数是24.

练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53)

2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.

教师引导,启发,学生笔答,板书,评价,体会.

(四)总结,扩展

1奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.

数与数字的关系

两位数=(十位数字×10)+个位数字.

三位数=(百位数字×100)+(十位数字×10)+个位数字.

……

2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.

四、布置作业

教材p.42中a1、2、

一元二次方程的教案篇5

一、课程内容剖析:

1、教材内容影响力和功效

这节课是数学(基本控制模块)上册第二章第三节《一元二次不等式》。从内容上看它是大伙儿初中学过的一元一次不等式的扩宽,此外它也与一元二次方程、二次函数正中间联系紧密联系,牵涉到的专业知识方面较多。从观念方面看,这节课突显本现了数形结合观念。另外一元二次不等式是处理函数定义域、值域等难题的关键专用工具,因而这节课在全部初中数学中具备较关键的影响力和功效。

2、课程目标

专业知识总体目标:正确认识一元二次不等式、一元二次方程、二次函数的关联。熟练掌握一元二次不等式的解法。

能力总体目标:塑造数形结合观念、抽象思维能力和形象思维能力。

观念总体目标:在课堂教学中渗入由实际到抽象性,由独特到一般,类比猜测、等价转换的数学观念方式 。

感情总体目标:根据实际情境,使学生感受数学与实践活动的密切联系,体会数学风采,激起学生求知冲动。

3、重点难点

重要:一元二次不等式的解法。

难点:一元二次方程,一元二次不等式与二次函数的关系。

二、学生状况剖析:

大家的学生是在学了一元一次不等式,一元一次方程、一元一次涵数,一元二次方程的基本上学习培训一元二次不等式。但大多数数学生的基本都并不是非常好,解一元二次方程有一定的艰难。

三、课堂教学环境分析:

教学环境应包含和睦的师生关系、多媒体系统的有效运用、优良的课堂教学机构、有效的难题情境。构建和睦的师生关系有益于提升学习兴趣,大家院校要创建和睦的师生关系是必须花许多思绪的,非常是学生就业班的同学们,且要有一个非常长的融入時间。大家院校的每名教师都是有手提电脑,每间课室都是有宽屏电子器件显示屏,教师都能灵活运用多媒体设备的应用。应用信息化教学效果非常的好、学生非常容易了解、学习培训的主动性高。上课的时候较为留意构建适合的难题情境,实际效果会非常好,学生从日常生活具体考虑,回应所提的难题,不经意间学了新的`专业知识,她们不容易觉得到学习培训疲惫,反倒能积极地学习培训。

四、课程目标剖析:

专业技能与专业能力:正确对待一元二次不等式、一元二次方程、二次函数的关系。熟练掌握一元二次不等式的解法。

全过程与方式 :根据看图像找解集,塑造学生从从形到数的转换能力,从实际到抽象性、从独特到一般的梳理归纳能力;根据对难题的思索、研究、沟通交流,塑造学生优良的数学沟通交流能力,提高其数形结合的逻辑思维观念。在课堂教学中渗入由实际到抽象性,由独特到一般,类比猜测、等价转换的数学观念方式 。

感情心态与价值观念:根据实际情境,使学生感受数学与实践活动的密切联系,激起学生学习培训科学研究一元二次不等式的主动性和对数学的感情,使学生充足感受获得专业知识的取得成功体会;在研究、探讨、沟通交流全过程中塑造学生的协作观念和团队意识,使其培养认真细致的治学心态和优良的思维习惯。

一元二次方程的教案篇6

教学内容:

本节内容是:

人教版义务教育课程标准实验教科书数学九年级上册

第22章第2节第1课时。

一、教学目标

(一)知识目标

1、理解求解一元二次方程的实质。

2、掌握解一元二次方程的配方法。

(二)能力目标

1、体会数学的转化思想。

2、能根据配方法解一元二次方程的一般步骤解一元二次方程。

(三)情感态度及价值观

通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。

二、教学重点

配方法解一元二次方程的一般步骤

三、教学难点

具体用配方法的一般步骤解一元二次方程。

四、知识考点

运用配方法解一元二次方程。

五、教学过程

(一)复习引入

1、复习:

解一元一次方程的`一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

2、引入:

二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。

(二)新课探究

通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注

意力,引发学生思考。

问题1:

一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?

问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,

具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2

列出方程:60x2=1500

x2=25

x=±5

因为x为棱长不能为负值,所以x=5

即:正方体的棱长为5dm。

1、用直接开平方法解一元二次方程

(1)定义:运用平方根的定义直接开方求出一元二次方程解。

(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。

问题2:

要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?

问题2重在引出用配方法解一元二次方程。而问题2应该大部分同学都不会,所以由我来具体的讲解。主要通过与完全平方式对比逐步解这个方程。再由这个方程的求解过程师生共同总结出配方法解一元二次方程的一般步骤。让学生加深映像。

具体解题步骤:

解:设场地宽x m,长(x +6)m。

列方程: x(x +6)=16

即: x2+6x-16=0

x2+6x=16

x2+6x+9=16+9

(1)有实根(2)有两正根(3)一正一负

变式题:m为何实数值时,关于x的方程x2?mx?(3?m)?0有两个大于1的根.

例2. 若8x4+8(a-2)x2-a+5>0对于任意实数x均成立,求实数a的取值范围.

例3.关于x的方程ax?2x?1?0至少有一个负根,求实数m的取值范围。

课堂小练习:

【布置作业】

省略

一元二次方程的教案6篇相关文章:

《传球》的教案最新6篇

点的写法教案6篇

秤的教案推荐6篇

玩具的教案推荐6篇

小岛的教案6篇

江南的教案6篇

跨的游戏教案6篇

水的作用教案6篇

6的组成大班数学教案6篇

有趣的昆虫教案6篇

一元二次方程的教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
139221