教师写一份教案,是为了让学生在课堂上更快地掌握知识要点,写教案可以让教师更清晰地了解每节课的重点和难点,下面是多客范文网小编为您分享的分数墙教案7篇,感谢您的参阅。
分数墙教案篇1
【教学目标】
1、理解异分母分数加减法必须先通分的道理,掌握异分母分数加减法的计算方法,能正确地进行计算。
2、渗透转化的数学思想,进一步培养学生自觉验算的良好习惯。
3、让学生在交流的过程中体验成功的喜悦,增强学生自主学习、合作交流的意识。
【教学过程】
一、复习铺垫
1、出示卡片口算
4/55=
3/44=
2/7+3/7=
8/9+2/9=
16/1818=
2、说一说同分母分数加、减法的计算法则。(板书同分母分数加、减法的计算法则)
3、为什么计算同分母分数加减法可以分母不变,只把分子相加减?(因为分母相同,也就是分数单位相同,单位相同的数可以直接相加减。)
二、创设情境,导入新知。
1、根据情境提问题并列式。
向学生介绍什么是生活垃圾,以及生活垃圾对环境的污染情况。渗透不乱扔垃圾,自觉把垃圾分类处理的环保教育。
用课件出示例1的垃圾分类图,请学生仔细观察,说一说,从图中了解到了哪些信息?
根据情境中的数据,提出问题:
(1)废金属和纸张垃圾是垃圾回收的主要对象,它们在生活垃圾中一共占几分之几?
(2)危险垃圾多还是食物残渣多?多多少?
引导并指名学生列式: 1/4+3/10 3/1020 (板书算式)
2、比较不同,导入新课
教师:黑板上这两道题,同学们能直接算出结果吗?(不能)刚才那些题你们算得特别快,为什么这两道不行呢?它们有什么区别吗?(指名回答)
教师:是的,像黑板上这样,由不同分母分数组成的加减法,叫异分母加减法。与同分母分数加减法的计算方法不同。这一节课我们就来研究异分母分数加减法的计算。(板书课题:异分母分数加减法)
三、 新课
t;一>例1(1)1/4+3/10
1、理解分母不同,不能直接相加
教师:我们先看第一道加法题:1/4+3/10 ,为什么分母不同,就不能直接相加呢?(指名回答:分母不同,也就是分数单位就不同,就不能相加)
看扇形图加深理解。图片出示:
教师:我们再从图上看一下,用两个大小相同的圆表示单位1,根据分数的意义,涂色的部分分别表示1/4和3/10。1/4的分数单位是1/4,用这样的一个大扇形表示,3/10的分数单位是1/10,用这样的一个小扇形表示,它们的大小不同。1/4+3/10就是用一个大扇形加上三个小扇形,能直接相加吗?所以,1/4+3/10因为分母不同,也就是分数单位不同,不能直接相加。
2、引导学生合作交流
教师:只要解决了什么问题,1/4和3/10就可以直接相加了?(转化成分母相同的分数)
用什么方法可以转化呢?同学们能用学过的知识解决吗?
你们可以先自己想一想,然后再和小组同学一起讨论研究。
学生分组讨论、试算,教师巡视指导。
3、集体交流
教师:都研究的差不多了,我们一起交流一下。哪个小组同学愿意到前边谈谈你们的想法?
各小组介绍各自的计算和思考过程,引导学生比较评价,选出最好的方法。
板书:1/4+3/10=5/20+6/20=11/20
4、课件演示
教师:为了加深理解,我们再从图上看一看1/4+3/10的过程。
教师:1/4和3/10因为分母(不同).也就是分数单位不同,不能直接相加,所以同学们就用通分的方法,把它们转化为分母相同的分数5/20和6/20。这样分数单位就相同了,都是1/20。你看表示1/4和3/10的两个图形都变成了由许多个大小一样的小扇形组成的图形,就可以直接相加减了。
t;二>例1(2) 3/1020
1、 引导学生用刚才探索出来的方法,计算3/1020。请一名学生板演,其余学生在练习本上试算。
2、请板演的学生说说是怎样计算这道题的。
t;三>总结计算方法
1、教师:我们已经计算出两道异分母分数加减法的题了,你们考虑过没有,我们计算这类题的关键是什么呢?(通分)结合以上的计算,同学们能试着总结出异分母分数的计算方法吗?可以跟同桌交流一下。
2、指名学生回答,教师把这个计算方法写在黑板上。(板书:先通分,再按同分母分数加减法的方法计算)齐读一遍。
t;四>、阅读课本
教师:今天我们所学的是课本110页和111页的内容,请同学们打开书,自由阅读一下这两页,再回顾反思一下新知识,如果有什么疑问还可以提出来和大家交流。
四、总结
这节课我们学习了异分母分数加减法,同学们通过积极探索和互相的合作交流,自己找到了计算的方法,并解决了许多相关的问题,都非常不错。老师希望同学们能灵活运用这些知识,在生活中解决更多的问题。
分数墙教案篇2
教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力.
教学重点:分数的数感培养,以及与除法的联系.
教学难点:抽象思维的培养.
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:a,7/8是什么数 它表示什么
b,7÷8是什么运算 它又表示什么
c,你发现7/8和7÷8之间有联系吗
2,揭示课题.
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学p90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:a,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米.
b,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
c,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学p90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:a,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
b,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:a,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的'1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
b,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3,小结提问:a,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
b,你能举几个用分数表示整数除法的商的例子吗
c,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
d,b为什么不能等于0
4, 看书p91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三,巩固练习 [课件5]
1,用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五,家作
p93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
分数墙教案篇3
本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。
第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。
第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。
教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。
第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的百分数问题中去。
一、 一题两解既含运算顺序,又含运算律的内容。
例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法。教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序。算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的'算式要先算乘法。算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的米数,这正是在算式里加括号的目的。所以,计算有括号的算式,要先算括号里面的。类似上面的那些体会,在教学整数四则混合运算时曾经有过。教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要。而且,获得这些体会并不困难。第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景。
在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识。
比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算。需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交叉约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律。教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述。然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律。如139/10,交叉约分时应用了乘法结合律,只是没有写出1/4(110);又如253/4,约分时应用了乘法交换律,只是241/5这个过程没有写出来。最后才总结出整数的运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便。
应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握。和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6656/7。这是一道两数之积减两数之商的题,似乎与运算律对不上号。如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的必要条件。二是易混,如44/5+4/54。粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区。只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律。本单元教材设计简便运算的练习题,注意了这两个特点。另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题。让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练。
二、 数形结合教学较复杂问题的数量关系。
例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系。说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法。就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式459;也可以根据女运动员人数占运动员总人数的(19)列出算式45(19)。再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4)。教学这两道例题,教材里只出现前一种解法。因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找。而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的教学直至初中数学里经常应用。至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率。如果学生能够独立想到,并且喜欢这样列式,应该是允许的。教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担。
两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路。例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路。例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班。教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验。以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考。为此,要加强画线段图的教学。首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的班级数。这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路。其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上。而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们。最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具。
练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路。第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数。比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数。第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同。第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4。因此,算式54在两道题里的意义不同。虽然两题都是求钢条还剩下的米数,解法不同的道理是很清楚的。第13题里设计了两个意义不同的1/8,其中一个1/8表示的是实际用煤节约的吨数相当于计划用煤吨数的份额,另一个1/8是实际用煤节约的吨数。由于两小题里实际用煤节约的吨数直接已知或不直接已知,求实际用煤吨数的方法自然就不同了。
分数墙教案篇4
教学内容:人教版五年级数学下册57页内容。
教学目标:
知识与能力:使学生理解和掌握分数的基本性质,并能应用这一规律解决简单的实际问题。
过程与方法:能在观察、比较、猜想、验证等学习活动的过程中,有条理、有根据地思考、探究问题,培养学生分析和抽象概括的能力。
情感态度价值观:体验数学验证的思想,培养乐于探究的学习态度。
教学重点:使学生理解和掌握分数的基本性质。
教学难点:运用分数的基本性质解决相关的问题。
教学准备:多媒体课件、正方形纸、直尺、彩笔
教学过程:
一、铺垫孕伏,温故迁移
1.比一比:看谁算得又对又快。
2.说一说:商不变的性质是什么?
3.想一想:分数与除法有怎样的关系?
4.猜一猜:除法中有商不变的规律,分数中是否具有类似的规律?
二、设疑激趣,探究新知
(一)故事激趣,引出分数。
说出自己从故事中听到的分数。
(二)小组合作,直观感知。
1.折一折:拿出三张同样大小的正方形纸,分别用对折的方法平均分成2份、4份、8份。
2.画一画:画出折痕所在的直线。
3.涂一涂:
(1)给平均分成2份的正方形纸的其中的1份涂上颜色。
(2)给平均分成4份的正方形纸的其中的2份涂上颜色。
(3)给平均分成8份的正方形纸的其中的4份涂上颜色。
4.比一比:比较3张正方形纸涂色部分的大小。
5.议一议:和同伴说说自己的想法。
(二)观察比较,探究规律。
1.这三个分数的分子、分母都不同,分数的大小却相等。你能找出它们之间的变化规律吗?请同学们四人一组,讨论这个问题。
2.汇报交流。
3.启发点拨。
通过从左往右观察、比较、分析,你发现了什么?
引导学生小结得出:分数的分子、分母同时乘相同的数,分数的大小不变。
那么,从右往左看呢?
让学生再次归纳:分数的'分子、分母同时除以相同的数,分数的大小不变。
4.归纳小结:引导学生概括出分数的基本性质。
5.启发思考:这里的“相同的数”可以是任何数吗?(补充板书:0除外),你能举例说明吗?
(三)独立尝试,运用规律。
1.学生独立思考,完成例2。
2.反馈交流,订正点拨。
3.小结:我们可以运用分数的基本性质把一个分数化成分母不同但大小不变的分数。
三、达标检测,内化提升(见《达标测试题》)
四、总结收获,评价激励
这节课你有什么收获?你对自己的哪些表现比较满意?
板书设计:
分数的基本性质
例1:
分数的分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。
例2:
分数墙教案篇5
教学内容:教科书第82页练习十四第5—9题。
教学目标:
1、通过练习,进一步理解并掌握异分母分数加、减法计算方法,能正确计算简单的异分母分数加、减法,并能用来解决一些简单的实际问题。
2、通过估算练习,进一步培养学生的数感,进一步感受数学与生活的联系。
3、在运用数学知识解决问题的过程中,进一步培养学生收集信息、选择信息去解决问题的能力。
练习重点:
通过练习,提高学生计算异分母分数加、减法的能力。
教学准备:
教学光盘或自制投影片
教学过程:
一、情境导入、回顾再现
谈话:上节课我们学习了什么?
请学生交流:异分母分数加、减法的计算方法是怎样的?
揭示课题:这节课,我们继续进行异分母分数加、减法的练习。(板书课题)
(设计意图:开门见山切入主题,直接引起学生对上一节课的回忆。)
二、分层练习、强化提高
1、口算:
2、解方程
x+=—x=
x—=x+=
3、出示练习十四第5题。
(1)学生先观察每组的两个算式,说说自己的想法,可以对计算结果进行分析和合理猜测。(鼓励学生进行有根据地猜测和推想)
(2)学生每人选做两组题,计算后思考其中隐藏的规律。
(3)请学生先和同桌进行交流,再请几位学生来说说自己的想法,如:每组题中的两个分母的最大公因数是1,分子也是1,把这样的两个分数相加、减,得数的分母就是原来两个分母的乘积,而分子就是原来两个分母的和或差。(教师及时学生交流情况)
(设计意图:通过不同类型的习题练习,巩固异分母分数加减法的基本知识,形成基本技能)
三、自主检测、完善
1、出示练习十四第6题。
(1)理解题目意思后,学生先独立思考进行解答。
(2)组织学生进行交流,说说自己是怎样思考的。
2、出示练习十四第7题。
(1)先让学生进行估算,看看哪几题的结果接近1/2,再计算。
(2)组织学生进行交流,教师及时。
3、解决问题。
(1)出示练习十四第8题。
学生认真看图后独立解答,然后进行交流。
(2)出示练习十四第9题。
学生认真看图,收集从图中获取的信息,然后独立思考并解答三个问题。
组织学生交流,教师及时了解学生解题情况,发现问题及时讲评。
4、补充练习
1、食堂运来一批大米,第一周吃了总数的4/15,第二周吃了总数的7/60。这两周一共吃了总数的几分之几?
2、张大伯收了1/2吨西瓜,第一天卖出总数的1/5,还剩总数的几分之几?
3、一个最简分数,分子减去1,约分后是5/6,原分数是多少?
4、一个分数,分子、分母之和是29,如果分母增加13,约分后得1/6,原分数是多少?
学生独立完成后进行交流,同桌之间可互相解答情况。
(设计意图:通过测试的形式对学生进行分数加减法知识的`检验,找出存在的问题,订正错误,并体验学习的成功喜悦。)
四、归纳课外延伸
通过今天的练习你有哪些收获?练习过程中还有什么问题吗?
教后反思:
本节课是练习课,学生能熟练地运用异分母分数加、减法的计算法则,能选择自己喜欢的方法进行计算。还能运用已学的运算定律、性质等进行简便计算,效果比较好。但在拓展练习中,很多学生受思维定势,打不开思路,经提示和部分学生的引路,知道了很多的思考方法。另外在练习过程中,通过不同类型的习题练习,巩固异分母分数加减法的基本知识,形成基本技能。通过测试的形式对学生进行分数加减法知识的检验,找出存在的问题,订正错误,并体验学习的成功喜悦。
分数墙教案篇6
教学内容:
教材第3页例2,做一做。
教学目标:
1、通过直观操作理解一个数乘分数的意义
2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:
理解一个数乘分数的意义。
教学难点:
理解一个数乘分数的意义。
教学过程:
一、复习导入
1、计算
2、一个正方形的边长是 m,它的`周长是多少米?
二、创设情境,探究整数乘分数
1、借助情境理解整数乘分数的意义。
1桶水有1/2l。3桶共多少l?12 桶是多少l?14 桶是多少l?
(1)理解题意,明确题中的数量关系:单位量数量=总量
(2)根据题意列出算式: 3桶水共多少l?1/23
12 桶是多少l?1/212 14 桶是多少l?1/214
(3)探究每道算式的意义
1/23表示求3个1/2l,也就是求1/2l的3倍是多少。
1/2是一半,1/212 表示12l的一半,也就是求12l的1/2是多少。
1/214 表示求1/2l的14倍是多少。
发现:一个数乘分数表示的是求这个数的几分之几是多少。
(4)解决问题。123=36(l)
121/4=3(l) 答:3桶共36l。 桶是6l。 桶是3l。
2、完成做一做
一袋面粉重3㎏。已经吃了它的 ,吃了多少千克?
学生独立解答后汇报。
3、在学校举行的泥塑大塞中,一班共制作泥塑作品15件,其中男生做了总数的 。一班男生做了多少件?(分析:男生做了总数的 ,是把一班共制作泥塑作品15件看作单位1,把总数15件平均分成5份。男生做的占其中的3份。)
4、归纳总结
求一个数的几分之几是多少,用乘法计算。
5、练习:29 6= 1234 = 310 4=
观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的分母约分。
四、巩固练习,反馈提高
练习一第2、3题。
五、全课小结
分数墙教案篇7
教学目标
1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。
3.培养学生分析能力、知识的迁移能力和语言表达能力。
教学重点和难点
正确的归纳出分数除以整数的计算法则,并能正确地进行计算。
教学过程设计
(一)复习导入
1.投影,看乘法算式写出两道除法算式。
67=42
( )( )=( )
( )( )=( )
问:谁还记得整数除法的意义是什么?
板书:积 一个因数 另一个因数
师:这节课我们来学习分数除法的意义和计算法则。(板书课题)
首先研究分数除法的意义。(板书:意义)
(二)新授教学
1.分数除法的意义。
我们来看下面的问题。(投影出示)
(1)每人吃半块月饼,5人一共吃几块月饼?
问:谁会列式计算?
问:你是怎么想的?
(2)两块半月饼,平均分给5个人,每人分得多少月饼?
问:怎样列式计算呢?
问:没有学过分数除法,得数怎么得来的?
(3)两块半月饼,分给每人半块,可分给几个人?
问:谁会列式计算?
问:为什么这样列式,怎样算出的得数?
观察这三个算式,它们之间有什么联系?
同桌讨论,指名回答。
生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。
板书:积 一个因数 另一个因数
问:与整数除法对比一下,分数除法的意义是什么?
同桌互相说一说,指定2~3名学生说。
板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。
师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。
做一做:(同学们做在书上。投影订正。)
根据下面的乘法算式和分数除法的意义,写出两个除法算式的得数。
问:你根据什么写出得数的?
师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)
2.分数除以整数的计算法则。
为什么这样列式?
(2)根据题意画出线段图。
生:把1米平均分成7份,取其中的6份。
(3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。
师:有道理,结果也正确,还有别的方法吗?
师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。
学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?
师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。
(4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?
生:被除数不变,除号变乘号,除数变成了它的倒数。
(5)试着说一说分数除以整数的计算法则。
板书:分数除以整数( )等于分数乘以这个整数的倒数。
想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)
问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。
计算法则是否会用呢?我们来自测一下。
投影做一做,学生做在书上,投影订正。
(三)巩固练习
1.计算下面各题。(投影)
2.判断下面的计算过程是否正确。对的举,错的举,并说明理由。(投影出示)
(2)题为什么对?举错的'说说你的想法?1的倒数是几?
(3)错在被除数变倒数了,而除数没有变。问:这道怎么改?
(4)错在除号没有变成乘号。怎么改?
(5)错在除数没有变成倒数。怎么改?
去计算。)
师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。
下面我们计算几道题,看谁能正确运用计算法则。
3.计算:
4.想一想:如果a是一个自然数,
(3)用一个数检验上面的结果是否对。
(四)课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
(五)作业
课本32页第3,4,5,6题。
课堂教学设计说明
这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算。
分数墙教案7篇相关文章:
★ 分数教学教案8篇