完备的教案可以使教学过程更加系统和科学,只有在综合考虑教学进度和学生的学习水平后,才能编写出合适的教案,下面是多客范文网小编为您分享的优秀的初中数学教案6篇,感谢您的参阅。
优秀的初中数学教案篇1
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
优秀的初中数学教案篇2
教学目标:
1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。
2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。
3、通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的灵活性。
4、培养学生大胆猜想、合理论证的`科学精神。
教学重点:
探索并运用三角形中位线的性质。
教学难点:
运用转化思想解决有关问题。
教学方法:
创设情境——建立数学模型——应用——拓展提高
教学过程:
情境创设:测量不可达两点距离。
探索活动:
活动一:剪纸拼图。
操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。
观察、猜想:四边形bcfd是什么四边形。
探索:如何说明四边形bcfd是平行四边形?
活动二:探索三角形中位线的性质。
应用
练习及解决情境问题。
例题教学
操作——猜想——验证
拓展:数学实验室
小结:布置作业。
优秀的初中数学教案篇3
初中数学分层次教学案例
?案例:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。
?背景:】我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??
例题:课本p123证明两个角之间的关系,
请同学们总结一下他们可能出现的情况。
?活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)
生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)
师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。
师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的。表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。
在师生的共同研讨下得出了这些方法。
师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。
生:??以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子?我今天才发现不是这样?我今后还会努力发言的?
?理念反思】:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的.机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。
1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。
2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的参与
就不是主动性参与,而是被动的、消极的参与。
3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。
4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。
优秀的初中数学教案篇4
教学目标
1.知识与技能
了解因式分解的意义,以及它与整式乘法的关系.
2.过程与方法
经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.
3.情感、态度与价值观
在探索因式分解的方法的活动中,培养学生有条理的.思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.
重、难点与关键
1.重点:了解因式分解的意义,感受其作用.
2.难点:整式乘法与因式分解之间的关系.
3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.
教学方法
采用“激趣导学”的教学方法.
教学过程
一、创设情境,激趣导入
?问题牵引】
请同学们探究下面的2个问题:
问题1:720能被哪些数整除?谈谈你的想法.
问题2:当a=102,b=98时,求a2-b2的值.
二、丰富联想,展示思维
探索:你会做下面的填空吗?
1.ma+mb+mc=()();
2.x2-4=()();
3.x2-2xy+y2=()2.
?师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.
三、小组活动,共同探究
?问题牵引】
(1)下列各式从左到右的变形是否为因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
(2)在下列括号里,填上适当的项,使等式成立.
①9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、随堂练习,巩固深化
课本练习.
?探研时空】计算:993-99能被100整除吗?
五、课堂总结,发展潜能
由学生自己进行小结,教师提出如下纲目:
1.什么叫因式分解?
2.因式分解与整式运算有何区别?
六、布置作业,专题突破
选用补充作业。
优秀的初中数学教案篇5
?余角和补角》第2课时教案
教学目标:
知识与能力
能正确运用角度表示方向,并能熟练运算和角有关的问题。
过程与方法
能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。
情感、态度、价值观
能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。
教学重点:方位角的表示方法。
教学难点:方位角的准确表示。
教学准备:预习书上有关内容
预习导学:
如图所示,请说出四条射线所表示的方位角?
教学过程;
一、创设情景,谈话导入
在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?
二、精讲点拔,质疑问难
方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。
三、课堂活动,强化训练
例1如图:指出图中射线oa、ob所表示的方向。
(学生个别回答,学生点评)
例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?
(小组讨论,个别回答,教师总结)
例3如图,货轮o在航行过程中发现灯塔a在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮b,货轮c和海岛d,仿照表示灯塔方位的方法,画出表示客轮b、货轮c、海岛d方向的射线。
(教师分析,一学生上黑板,学生点评)
四、延伸拓展,巩固内化
例4某哨兵上午8时测得一艘船的位置在哨所的.南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。
(1)请按比例尺1:画出图形。
(独立完成,一同学上黑板,学生点评)
(2)通过测量计算,确定船航行的方向和进度。
(小组讨论,得出结论,代表发言)
五、布置作业、当堂反馈
练习:请使用量角器、刻度尺画出下列点的位置。
(1)点a在点o的北偏东30°的方向上,离点o的距离为3cm。
(2)点b在点o的南偏西60°的方向上,离点o的距离为4cm。
(3)点c在点o的西北方向上,同时在点b的正北方向上。
作业:书p1407、9
优秀的初中数学教案篇6
一、 内容简介
本节课的:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的.答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、 教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同
角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的。差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难
和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、 理念和教学方式:
1、教师是学生学习的组织者、促进者、合学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
教学是师生交往、积极互动、共同发展的过程。当学生迷路的时
候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。
3、教学评价方式:
(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主
动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,
揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的
教学效果。
五、 教学媒体 :多媒体 六、 教学和活动过程:
教学过程设计如下:
?一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=,(-2m-3n)2=,
(2m-3n)2=,(-2m+3n)2=。
?二〉、分析问题
1、[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
?三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=
, (m-n)2=,
(-m+n)2=, (-m-n)2=,
(a+3)2=, (-c+5)2=(),
(-7-a)2=, ()2=.
2、判断:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+)2= 25a2+5ab+
( )⑤ (5a-)2= 5a2-5ab+
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、小试牛??
① (x+y)2 =;② (-y-x)2 =;
③ (2x+3)2 =;④ (3a-2)2 =;
⑤ (2x+3y)2 =;⑥ (4x-5y)2 =;
⑦ (+n)2 =;⑧ ()2 =.
?四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1) 公式右边共有3项。
(2) 两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
?五〉、冒险岛:
(1)(-3a+2b)2=
(2)(-7-2m) 2 =
(3)(-+2n) 2=
(4)(3/52b) 2=
(5)(mn+3) 2=
(6)() 2=
(7)(2xy2-3x2y) 2=
(8)(2n3-3m3) 2=
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
?七〉[作业] p34 随堂练习 p36 习题
七、课后反思
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。
优秀的初中数学教案6篇相关文章: