数学教学设计教案7篇

时间:
Kris
分享
下载本文

教案是教师实现教学目标的有效指导和支持,教案的撰写过程可以促使教师深入思考教学目标和方法,下面是多客范文网小编为您分享的数学教学设计教案7篇,感谢您的参阅。

数学教学设计教案7篇

数学教学设计教案篇1

教学目标

(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。

(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。

(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。

(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。

(5)进一步理解数形结合的思想方法。

教学建议

教材分析

(1)知识结构

曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。

(2)重点、难点分析

①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。

②本节的难点是曲线方程的概念和求曲线方程的方法。

教法建议

(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。

(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。

(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

(4)从集合与对应的观点可以看得更清楚:

设 表示曲线 上适合某种条件的点 的集合;

表示二元方程的解对应的点的坐标的集合。

可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

数学教学设计教案篇2

单元教学目标:

1、使学生掌握小数除法的计算方法。

2、使学生会用“四舍五入”法,结合实际情况用“进一”法和“去尾”法取商的近似数,初步认识循环小数、有限小数和无限小数。

3、使学生能借助计算器探索计算规律,能应用探索出的规律进行小数乘除法的计算。

4、使学生体会解决有关小数除法的简单实际问题,体会小数除法的应用价值。

第一课时 小数除以整数(一)

——商大于1

教学内容:p16例1、做一做,p19练习三第1、2题。

教学目的:

1、掌握比较容易的除数是整数的小数除法的计算方法,会用这种方法计算相应的小数除法。

2、培养学生的类推能力、发散思维能力、分析能力和抽象概括能力。

3、体验所学知识与现实生活的'联系,能应用所学知识解决生活中的简单问题,从中获得价值体验。

教学重点:理解并掌握小数除以整数的计算方法。

教学难点:理解商的小数点要与被除数的小数点对齐的道理。

教学过程:

一、复习准备:

计算下面各题并说一说整数除法的计算方法。

224÷4= 416÷32= 1380÷15=

二、导入新课:

情景图引入新课:同学们你们喜欢锻炼吗?经常锻炼对我们的身体有益,请看王鹏就坚持每天晨跑,请你根据图上信息提出一个数学问题?

出示例1:王鹏坚持晨练。他计划4周跑步22.4千米,平均每周应跑多少千米?教师:求平均每周应跑多少千米,怎样列式?(22.4÷4)

观察这道算式和前面学习的除法相比有什么不同?

板书课题:“小数除以整数”。

三。教学新课:

教师:想一想,被除数是小数该怎么除呢?小组讨论。分组交流讨论情况:

(1)生:22.4千米=22400米 22400÷4=5600米 5600米=5.6千米

(2)还可以列竖式计算。

教师:请同学们试着用竖式计算。计算完后,交流自己计算的方法。

教师:请学生将自己计算的竖式在视频展示台上展示出来,具体说说你是怎样算的?

追问:24表示什么?

商的小数点位置与被除数小数点的位置有什么关系?

引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一位上面,也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了,相同数位才对齐了,所以商的小数点要对着被除数的小数点对齐”。

问:和前面准备题中的224除以4相比,224除以4和它有哪些相同的地方?有哪些不同的地方?

怎样计算小数除以整数?(按整数除法的方法除,计算时商的小数点要和被除数的小数点对齐)

教师:同学们赞同这种说法吗?(赞同)老师也赞同他的分析。

教师:大家会用这种方法计算吗?(会)请同学们用这种方法算一算。

四、巩固练习

完成“做一做”:25.2÷6 34.5÷15

五、课堂作业:练习三的第1、2题

课后反思:

学生们在前一天的预习后共提出四个问题:

1,被除数是小数的除法怎样计算?(熊佳豪)

2,为什么在计算时先要扩大, 最后又要将结果缩小?(郑扬)

3,小数除以整数怎样确定小数点的位置?(梅家顺)

4,为什么小数点要打在被除数小数点的上面?

特别是第4个问题很有深度, 有研究的价值。 在这四个问题的带动下, 学生们一直精神饱满地投入到学习的全过程, 教学效果相当好。

数学教学设计教案篇3

一、课程性质与任务

数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

了解:初步知道知识的含义及其简单应用。

理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

第2单元不等式(8学时)

第3单元函数(12学时)

第4单元指数函数与对数函数(12学时)

第5单元三角函数(18学时)

第6单元数列(10学时)

第7单元平面向量(矢量)(10学时)

第8单元直线和圆的方程(18学时)

第9单元立体几何(14学时)

第10单元概率与统计初步(16学时)

2.职业模块

第1单元三角计算及其应用(16学时)

第2单元坐标变换与参数方程(12学时)

第3单元复数及其应用(10学时)

数学教学设计教案篇4

一、复习引新

1、复习旧知

提问:在简单的统计里我们学习过哪些知识?其中条形统计图和折线统计图各有什么特点?

2、引入新课

出示一组事先收集的在报刊、杂志、网络等出现的扇形统计图,说明:这些也是一种统计图,叫做扇形统计图。

板书:扇形统计图

二、教学新课

1、出示p76的扇形统计图。

提问:

(1)图中的这个圆被分成了几部分?每一部分的图形是什么形状?

(2)这个圆表示什么面积?我国的国土面积按地形分,被分成了几类?

(3)从这个图中还能获得哪些信息?

教师揭示扇形统计图的含义,并强调扇形统计图中的圆表示的是总数量,圆中的各个扇形表示的是各部分与总量的关系。

说明:我国国土总面积有960万平方千米,可以算出各类地形的面积分别是多少。

学生用计算器算出各类地形的面积后,可启发学生把算出的各类地形面积相加,看结果是否等于960万平方千米,以达到检验的目的。

2、小结

扇形统计图可以清楚地表示出各部分数量之间的关系。

3、做“练一练”第1题。

提问:统计图里的圆表示什么?这个扇形统计图表示什么意思?让学生计算书上的前2个问题。指名口答结果。最后提问回答。

4、做“练一练”第2题。

提问:观察统计图,你能了解到哪些信息?在班级里交流。

三、巩固练习

1、完成练习十五第1题

引导学生对两个统计图中的项目进行具体的比较,再交流。

2、练习十五第2题

组织学生交流。

3、练习十五第3题

可利用中国地图先让学生说说我国这几个海域的大体位置,再让学生对照统计图说说体会。算出各海域的面积后,也可让学生通过求和以达到检验的目的。

四、小结

通过今天的学习,你对扇形统计图有了哪些认识?

五、课堂作业

补充习题相关练习

数学教学设计教案篇5

教学目标

1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3、培养学生观察、归纳能力。

教学重点

1、等差数列的概念;

2、等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(i)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:

三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本p118练习3

(书面练习)课本p117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:

①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:

(v)课后作业

一、课本p118习题3.21,2

二、1、预习内容:课本p116例2p117例4

2、预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

数学教学设计教案篇6

由于时间是一个抽象的概念,三年级的小朋友掌握起来比较困难,因此本节课的设计基本上以活动为主,通过多种形式的体验活动,帮助学生逐步建立起分、秒的时间观念,体验时间在生活中的价值,提高珍惜时间的意识。

1.重视学生已有的生活经验,灵活利用主题图激发学生的学习兴趣。

三年级小朋友的认知是形象具体、生动活泼的,“秒”对于他们来说是抽象陌生的时间概念。为了给学生营造一个生动、有趣的认知空间,在设计本节课时,通过多种方式引导学生参与探索,让学生在“玩”的过程中认识时间单位“秒”。

2.重视时间观念的建立,通过活动帮助学生理解时间的可计量性。

在认识“秒”的基础上,引导学生多种感官参与,建立1秒的时间观念,在此基础上创设一系列的.游戏活动,让学生体验、感知,进而通过分针和秒针的运动验证“1分=60秒”,同时又注意到学科间的整合,设计了口算、朗读、画画等丰富多彩的自选活动,让学生在活动中体验1秒的长短以及分与秒的关系。

教师准备

ppt课件、各种钟表模型

学生准备

钟表模型

注:本书“上课解决方案”中的“教学目标”“教学重难点”见前面的“备课解决方案”。

教学过程

⊙创境激趣,导入新课

1.创设情境。

(课件出示主题图:春节联欢晚会现场,载歌载舞,新年的钟声就要敲响了,人们一起倒计时:十、九、八、七、六、五、四、三、二、一)学生随着课件一起倒数十个数。

师:同学们,你们在哪里见到过倒计时的场面呢?刚才这样的倒计时你们知道是用什么作时间单位的吗?(秒)计量很短的时间常用比分更小的单位“秒”,“秒”也是时间单位。大家想一想,生活中还有哪些时间是用秒来计时的?(学生举例)

2.导入新知。

生活中用秒计时的现象还真不少呢!今天,老师就和你们一起来认识时间单位“秒”。(板书课题:秒的认识)

设计意图:通过倒计时,让学生初步建立“秒”的概念,并且知道1秒大概有多久,然后思考生活中有哪些现象是用“秒”作单位的,增加数学学习的趣味性,激发学生的探究欲望。

合作探究,获取新知

1.欣赏生活中的钟表。(出示ppt课件)

2.观察钟面,认识秒针和1秒。(课件演示钟面)

师:你知道钟面上的哪根针是秒针吗?(又长又细的就是秒针)

师:秒针从12走到1走了几秒?秒针走了几小格?

(引导学生一起说出:秒针走1个小格就是1秒,走5个小格就是5秒,5个小格就是1个大格,那么1个大格就是5秒。板书:秒针走1个小格是1秒)

师:再看秒针从2走到4,走了几秒?(10秒)再接着看,秒针从6走到12,经过了多少秒?(30秒)

3.借助钟表体会1秒。

师:同学们都带来了心爱的钟表,下面就请你们仔细观察钟面,如果钟面上有秒针,就把钟表放在耳边仔细地听一听;如果是数字式的,就仔细地看一看时间是怎样一秒一秒地过去的。听声音的同学来把你听到的声音学给大家听一听。(引导学生模仿秒针发出的声音)看数字钟表的同学来介绍一下你的钟表上的时间是怎样一秒一秒地过去的。

师:课件展示生活中的数字电子表和秒表,观察它们是怎样记录以秒为单位的时间的。生活中你们还在哪些地方见过这样用数字来表示时间的?(电脑、红绿灯、计算器等)

师:你能用一个动作来表示1秒吗?(拍手、数数、眨眼睛、点头等)

设计意图:通过学生用动作来表示秒,切身感受1秒的短暂,使学生认识到时间的宝贵,培养学生珍惜时间的意识。

4.根据体验,谈谈你对1秒的感受。

看了刚才的表演,你们觉得1秒的时间过得怎样?(学生畅谈对1秒时间的感受)是呀,1秒的时间很短很短,但是,一些现代化的工具在1秒内却能做很多事情呢!你们看:(出示课件)

(1)喷气式飞机每秒飞行500米。

(2)人造卫星每秒飞行7900米。

(3)小汽车每秒约行驶20米。

(4)现代化工厂的流水线每秒能生产成千上万个零件。

(5)电脑每秒可进行3万亿次运算。

师:看了这么多的介绍,大家谈一谈1秒的作用。(作用很大,很广泛,1秒很有价值)所以我们不能小看这短短的1秒。现在你们对时间的作用有什么新的感受呢?谁来说一说?(珍惜每一秒,珍惜时间)刚才我们了解了1秒能创造出那么大的价值,如果我们把每一秒都积累起来,就会创造出更多的价值。

5.游戏活动,估算几秒。

小组活动:同学们,在我们平时的学习和生活中,用几秒的时间还可以做什么事情呢?(写一个字,擦一下黑板,爬一层楼梯……)下面,我们就来进行小组活动,每个小组4人,可以一人做事;一人当裁判,喊“开始”“停”;一人用自己的方式估算时间;一人用钟表计时,计时的过程中要看清秒针的起点和终点。

活动内容:每个小组发一个信封,上面都写着读一首诗、拼一幅图、画一棵大树、写两个“秒”字、做10道口算题……请各组成员讨论该怎样分配工作,活动结束后,每组计时的同学进行汇报。

师:刚才我们每个组分别用几秒钟做完一件事?在活动中进一步体验时间单位——秒。

探索猜测,发现1分=60秒(出示课堂活动卡)

播放1分钟的音乐,让学生用自己的方式估算时间,可以点头估算,可以拍手估算,也可以在心里数数等。

数学教学设计教案篇7

教学内容:p23例7、做一做,p26练习四第10、11题。

教学目的:

1、使学生学会用“四舍五入”法取商的近似数。

2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。

3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

教学重点:知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。

教学难点:能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

教学过程:

一、复习

1.按“四舍五入法”,将下列各数保留一位小数.

6。03 7。98

2.按“四舍五入”法,将下列各数保留两位小数.

8。785 7。602 4。003 5。897 3。996

做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

3。 计算0。38*1。14(得数保留两位小数)

二、新课

1.教学例7:

教师出示例6,口述图意, 再列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应 该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书。

教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?

教师要让学生想一想:“怎样求商的`近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)

我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?

2.p23做一做:

教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

师:解题时用了什么技巧?

三、巩固练习

1、求下面各题商的近似数:

3.81÷7 32÷42 246。4÷13

2、p26第10题第(1)题。

四、作业:p26第10题第(2)题、第11题。

课后小记:

本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习。但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了"一看, 二移"的步骤。 所以在设计巩固练习时应增加小数除以小数的练习。

其次我根据学情补充介绍了一种求商近似数的简便方法。 即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明 要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清 了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。

数学教学设计教案7篇相关文章:

数学教学学期工作总结优质7篇

数学教学观摩心得体会7篇

初二数学下学期教学工作总结7篇

数学教学学期工作总结最新7篇

教师数学教学周工作总结7篇

一年级上册数学教学工作计划7篇

小学二年级下册数学教学工作计划7篇

高中数学教学心得体会7篇

2023年春季数学教学工作总结7篇

二年级上册数学教学工作计划7篇

数学教学设计教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
140388