教案的编写应该注重学生的参与和互动,激发他们的学习兴趣和自主学习能力,教案的详细设计可以让我们创设多样化的学习场景,使课堂更加丰富多彩,下面是多客范文网小编为您分享的初一数学角的教案7篇,感谢您的参阅。
初一数学角的教案篇1
一、教学目标
1、知识与技能目标:经历有理数乘法法则探究的过程,学习两个有理数相乘的法则。
2、能力目标:通过推导两个有理数相乘法则的过程,培养归纳总结的能力,提高由特殊到一般的能力
3、情感目标:通过小组合作,培养与他人合作的精神
二、教学重难点
教学重点:经历由几组算式推导有理数乘法的法则的过程
教学难点:如何观察给定的乘法算式,从哪几个角度概况算式的规律。
三、课前准备
1、复习小学的乘法法则
2、出几道小学里已经做过的两数相乘的题目,并计算。
四、教学过程
(一)创设情境,引入新知
问题:根据课前准备,小学我们计算的两个数相乘都是正数乘正数或者正数乘零,现在我们知道有理数包括正数、负数和零三类,根据这种分类,你能说出两个有理数相乘会出现哪几种情况?(根据学生回答板书各种类型)
预设:学生可能会把正数乘负数、负数乘正数当作一种情况,教师可引导为两种。
(二)观察归纳,学习法则(设计说明:法则的得出分两部分)
第一部分分类探究(说明:3组探究重点是探究1)
探究1(师生共同活动)
问题1、观察下面熟识的算式,你能发现什么规律?
3×3=9
3×2=6
3×1=3
3×0=0
预设:如果学生有困难,可以提示学生观察两个因数有什么变化规律,积有什么变化规律。
这样会得到规律:左边因数都是3,右边因数依次减1,而积依次减3。
问题2、根据这个规律,你能填写下面的结论吗?
3×(-1)=
3×(-2)=
3×(-3)=
问题3这组数据的规律,对其他组类似规律的数据也成立吗?自己根据这个规律构造一组数试一试。
问题4、以上两组数相乘属于正数乘正数、正数乘负数,你能类比加法法则,从符号与绝对值两方面再来观察他们存在什么规律吗?
归纳可得:(板书)正数乘正数,结果为正,绝对值相乘;正数乘负数,结果为负,绝对值相乘。
阶段性学习方法小结:回想探究1的结论,我们是怎样一步步得到的?
(让学生充分发表见解,教师适当引导,得出主要环节:观察-猜想-归纳)
(说明:设计意图有两个,一是初一学生学法意识的形成,二是为探究2,3的学习做好引导)
探究2(小组讨论)
根据刚才得到的规律,你能得出下面的结果吗?能据此总结出规律吗?
3×3=9
2×3=6
1×3=3
0×3=0
(-1)×3=
(-2)×3=
(-3)×3=
(选一组代表上讲台分析,得出结论)
归纳小结:(负数乘正数,结果为负,绝对值相乘)
探究3(同桌交流)、
利用上面的规律填空,并说出其中的规律。
(-3)×3=
(-3)×2=
(-3)×1=
(-3)×0=
(-3)×(-1)=
(-3)×(-2)=
(-3)×(-3)=
由学生总结得出:负数乘负数,结果为正,绝对值相乘。
第二部分归纳总结
问题1:总结上面所有的情况,你能试着说出有理数乘法的法则吗?
在师生共同交流下,得出有理数乘法法则:
两数相乘,同号得正,异号得负,再把绝对值相乘。任何数与0相乘,都得0。
问题2:你认为根据有理数乘法法则进行有理数乘法运算时,应按照怎样的步骤进行运算?可类比加法的运算方法。
(说明:向学生渗透分类讨论及类比思想,再次形成学法体系)
(三)例题示范,学会应用
例1:计算(1)(-3)×9=(2)8×(-1)(3)(-3)×(-4)(4)6×0
例2:用正数、负数表示气温的变化,上升为正,下降为负。登山队攀登高山,每登高1千米,气温变化量为-6℃,攀登3千米后,气温有什么变化?
五、归纳与总结
说说这节课你有什么收获?你还有什么问题存在?
初一数学角的教案篇2
复习目标:
1、复习频数与频率的相关概念
2、复习频数分布直方图和频率分布折线图等相关知识
3、能从图表中获取正确的信息,提高知识的应用能力
专题一:频数与频率
(1)(2)频数=频率×数据总数(3);
例1.如下表是某班21名男生100m跑成绩(精确到0.1秒)的频数分布表;
组别(秒)频数频率
12.55-13.552
13.55-14.555
14.55-15.557
15.55-16.554
16.55-17.553
(1)求各组频率,并填入上表;
(2)求其中100m跑的成绩不低于15.5秒的人数和所占的比例;
(3)若成绩在13.55以内可能在校运动会上取得名次,我们班获胜率为多少?
组别(分)频数频率
14
2
36
48%
51
例2.车站实施电脑售票后大大缩短了购票者排队等候的时间,一名记者在车站随机访问了25名购票者,了解到他们排队等候的时间分别为(单位:分)
1,2,2,2,1,3,4,2,2,2,2,3,
1,3,4,5,3,2,1,2,2,3,2,3,2。
(1)请填写如右的频数分布表:
(2)求出等待时间为2分和3分的
人数和所占的百分比。
专题二:频数(频率)分布表、分布直方图
1.画频数分布直方图的步骤
(1)计算极差(2)决定组数和组距
(3)决定分点(4)列频数分布表或画分布直方图
2.例题分析
例1抽查20名学生每分脉搏跳动次数,获得如下数据(单位:次)81,73,77,79,80,78,85,80,68,90,80,89,82,81,84,72,83,77,79,75。
请制作表示上述数据的频数分布直方图。
解:(1)列出频数分布表,为方便起见,我们也给出组中值的数据
20名学生每分脉搏跳动次数的频数分布直方图表
组别(秒)组中值频数
67.5~72.5702
72.5~77.5754
77.5~82.5809
82.5~87.5853
87.5~92.5902
(2)分别以横轴上每组别两边界点为端点的线段为底边,作高为相应频数的矩形,就得到所求的频数分布直方图。
例2.请观察右图,并回答下列问题:
⑴被检查的矿泉水总数有多少种?
⑵被检查的矿泉水的最低ph为多少?
⑶组界为6.7——9.3这一组的频数、频率分别是多少?(每一组包括前一个边界值,不包括后一个边界值)
⑷根据我过2001年公布的生活饮用水卫生规范,饮用水的ph应在6.5~8.5的范围内,被检测的矿泉水不符合这一标准的有多少种?占总数的百分之几?
达标检测
1、在一次选举中,某同学的选票没有超过半数,那么其频率()
a.大于50%b.等于50%c.小于50%d.小于或等于50%
2.对某班40名同学的一次数学成绩进行统计,适当分组后成绩落在80~90这个小组的频率是20%,那么成绩落在80~90这个分数段的人数是()
a.20b.10c.8d.12
3.一组数据的频率反映了()
a.数据的多少b.这些数据的平均水平
c.这些数据的离散程度d.这些数据所占总数比例的大小
4.已知一组数据:1821292318202419232421
192422172223192117
对这些数据适当分组,其中17~19这一组的频数和频率分别为()
a.5,25%b.6,30%c.8,40%d.7,35%
5.将一批数据分成若干小组,那各组的频数是指;频率是指.
6.小明1分钟内共投篮75次,共进了45球,则小明进球的频率是.
7.某校七年级学生有1080人购买校服,校服按小号、中号、大号、加大号四种,在调查得到的数据中,小号、中号、大号出现的频数分别是250,420,250,则加大号出现的频率是.
8.某自行车厂再一次检查中,从2000辆自行车中抽查了100辆,其中有2辆不合格,则出现次品的频率是,2000辆自行车中有辆为不合格产品.
9.为了迎接2008年奥运会,北京某单位举办了英语培训班,100名职工在一个月内参加英语培训的次数如下表所示:
(1)这个月职工平均参加英语培训的次数为次.
(2)参加次数最多的职工频率是.
次数45678
人数1520302015
10.今年4月,国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图11-1-2中所给信息解答下列问题:
(1)请将两幅统计图补充完整;
(2)在这次形体测评中,一共抽查了名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有人;
(3)根据统计结果,请你简单谈谈自己的看法.
11.未成年人思想道德建设越来越受到社会的关注.某青少年研究所随机调查了大连市内某校100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频率分布表和频率分布直方图
分组频数频率
0.5~50.5_______0.1
50.5~______200.2
100.5~150.5_____________
______200.5300.3
200.5~250.5100.1
250.5~300.550.05
合计100________
(1)补全频率分布表;
(2)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议?
初一数学角的教案篇3
教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征
知识重点相反数的概念
教学过程(师生活动)设计理念
设置情境
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类
4,-2,-5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)
思考结论:教科书第13页的思考
再换2个类似的数试一试。
归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力
培养学生的观察与归纳能力,渗透数形思想
深化主题提炼定义给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义
给出规律
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法
小结与作业
课堂小结1,相反数的定义
2,互为相反数的数在数轴上表示的点的特征
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题
2,选做题教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
课题:1.2.4绝对值
教学目标1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点两个负数大小的比较
知识重点绝对值的概念
教学过程(师生活动)设计理念
设置情境
引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负
数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体
验数学知识与生活实际的联系.
初一数学角的教案篇4
一、教学内容:
人教版教材五年级上册第五单元多边形的面积整理与复习
二、教学目标:
1、使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。
2、使学生感受数学方法和思想的重要性及其应用的'广泛性。体会数学的价值,培养对数学学习的热爱
三、教学重、难点
重点:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。
难点:引导学生整理多边形面积的推导过程,掌握转化的数学思想方法,建构知识网络。
四、教学准备:多媒体课件,多边形纸模
五、教学步骤与过程
(一)导入复习
师:同学们,我们学过哪些平面图形的面积计算公式?(正方形、长方形、平行四边形、三角形、梯形)
师:这节课我们就来重点整理和复习有关这些多边形的面积的知识。
板书课题:多边形面积计算复习课
(二)回顾整理,建构网络
1.复习平行四边形、三角形、梯形面积公式的推导过程。
⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。
⑵根据学生的回答,出示每个公式的推导过程。
六、课堂练习
学生独立计算。指名学生板演,集体订正七、说一说,你学会了什么?从整理图中能看出各种图形之间的关系吗?
七,作业布置:练习十九
板书设计
s=ah÷2
s=abs=ah
s=(a+b)h÷2
初一数学角的教案篇5
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法
教学难点:给定的数字将被填入它所属的集合中
教学方法:问题导向法
学习方法:自主探究法
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1.有以下数字:15,9,-5,2/15,8,0.1,-5.22,-80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的`机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数,
2._______和_________统称为分数
3.____ ______统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、2中,整数: 、分数:;正整数:、负整数: 、正分数: 、负分数:.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{ …}负数集合:{ …}
正整数集合:{ …}负分数集合:{ …}
4.下列说法正确的是( )
a.0是最小的正整数
b.0是最小的有理数
c.0既不是整数也不是分数
d. 0既不是正数也不是负数
5、下列说法正确的有( )
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
初一数学角的教案篇6
《1.2有理数》教学设计
?学习目标】:
1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准 与集合的含义;
3、体验分类是数学上常用的处理问题方法;
?学习重点】:正确理解有理数的概念
?学习难点】:正确理解分类的标准和按照一定标准分类
《1.2.1有理数》同步练习含答案
5.对-3.14,下面说法正确的是(b)
a.是负数,不是分数
b.是负数,也是分数
c.是分数,不是有理数
d.不是分数,是有理数
《1.2有理数》同步练习含答案解析
8.如果a与1互为相反数,则|a|=( )
a.2 b.﹣2 c.1 d.﹣1
?考点】绝对值;相反数.
?分析】根据互为相反数的定义,知a=﹣1,从而求解.
互为相反数的定义:只有符号不同的两个数叫互为相反数.
?解答】解:根据a与1互为相反数,得
a=﹣1.
所以|a|=1.
故选c.
?点评】此题主要是考查了相反数的概念和绝对值的性质.
9.若|1﹣a|=a﹣1,则a的取值范围是( )
a.a>1 b.a≥1 c.a
?考点】绝对值.
?分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.
?解答】解:∵|1﹣a|=a﹣1,
∴1﹣a≤0,
∴a≥1,
故选b.
?点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.
初一数学角的教案篇7
【学习目标】
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
【学习重难点】
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
【学习过程】
一、自主学习
1、列车在铁轨上行驶,速度为100千米/小时,
(1)当行驶2小时后行驶的路程是___________________,
(2)当行驶t小时后行驶的路程是___________________
2、苹果的原价是p元,按8折优惠出售,则单价是___________
3、某产品前年的产量是n件,去年的'产量是前年的产量的m倍,则去年的产量是____________
4、长方体的包装盒的长和宽都是a,高是h,用式子表示体积为______________
5、数n的相反数是____________
请观察所列代数式包含哪些运算,有何共同运算特征
二、合作探究:(自学书本p56解决下列问题)
单项式的定义:_____________________________举例说明:_______________________
单项式的系数:__________________________
单项式的次数:__________________________
特别注意:单独的 _____________或____________也叫单项式.
三、应用新知
1、下列各式:① abc; ② 2a-b; ③b2; ④-5ab2; ⑤ a(m+n); ⑥-xy2;
⑦-5; ⑧y; ⑨ ;⑩ ;(11) 中,单项式是___________(填序号)
2、填表
单项式
系数
次数
3、 判断题(对的打√,错的打×)
(1)字母a和数字1都不是单项式()
(2) 可以看作 与3的乘积,所以式子 是单项式()
(3)单项式xyz的次数是3()
(4)- 这个单项式系数是2,次数是4()
4、如果单项式 的次数是5,求n的值。
5、思考:单项式 的系数和次数分别是多少?
注意事项:
①圆周率π是常数; ②当单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;③单项式次数只与字母指数有关。
四、当堂检测
1、判断下列各代数式哪些是单项式?
(1)3a+b; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5(8)8 (9) 。
单项式有:________________________________________________________
2、下列说法正确的是( )
a、单项式xn的系数是0,次数是n;
b、单项式-x5y 的系数是-1,次数是5;
c、单项式22ab2c系数是0,次数是6 ;
d、单项式 的系数是- ,次数是3.
3、下列代数式:-mn; ; ;-x3。系数为1的单项式有_________________;系数为 的单项式有______________________;一次单项式有_______________;二次单项式有___________________。
4、填表
单项式
10%b
所含字母
系 数
次 数
5、如果 是关于x、y的5次单项式,且系数是4,求m、n的值.
五、小结与反思
1我的收获是
2、还有没解决的问题是
初一数学角的教案7篇相关文章:
★ 数学第几教案7篇